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The standard treatment of PD symptoms depends on the experience of a particu-
lar neurologist, UPDRS and Hoehn and Yahr scale measurements in order to 
estimate the stage of PD, the patient’s reports and patient’s responses to medica-
tions. All these estimations are to a great extent subjective and determine differ-
ent treatments in different centers. The purpose of this work was to develop an 
approach that may more precisely and objectively estimate a patient’s symptoms 
and in consequence optimize individual PD treatment. We have presented sever-
al examples of different methods that make measurements in PD more precise. 
However, greater precision and objectivity were only the first steps. In addition, 
all (standard and new) data must be evaluated in an intelligible way in order to 
better estimate PD symptoms and their developments. We have used data mining 
and machine learning approaches to mimic the “golden” neurologist’s reasoning. 
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STRESZCZENIE  

Standardowe leczenie objawów PD zależy od doświadczenia danego neurologa 
oraz wyników pomiarów w skalach UPDRS oraz Hoehn i Yahr, aby ocenić sta-
dium choroby Parkinsona, opinii pacjenta i jego reakcji na leki. Wszystkie oceny 
stosowane w tym celu są w dużej mierze subiektywne. Celem niniejszej pracy 
było opracowanie podejścia, które mogłoby bardziej precyzyjnie i obiektywnie 
oszacować fluktację objawów pacjenta i w konsekwencji optymalizację indywi-
dualnego traktowania PD. Pokazaliśmy kilka przykładów różnych metod, które 
zwiększają precyzję pomiarów w PD. Trzeba zaznaczyć, że większa precyzja 
i obiektywność są tylko pierwszym krokiem. Ostatecznie wszystkie dane 
(otrzymane  zarówno  nowymi, jak  i   standardowymi metodami) muszą być po-  
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równane w czytelny sposób, aby lepiej ocenić nasilenie i rozwój objawów PD. Użyta metoda eksploracji danych 
i algorytm uczenia maszynowego mają naśladować „złoty” tok rozumowania neurologa. 

SŁO WA KLU C ZO WE  

eksploracja danych, algorytmy uczenia, choroba Parkinsona 

INTRODUCTION  

The most popular approach to study symptom devel-
opments in Parkinson’s disease (PD) patients is to use 
statistical methods. By applying statistics to large 
databases, one can find significant information about 
the specificity of PD. As larger databases have infor-
mation from different PD clinics, one can compare the 
results of different treatments. Nevertheless, due to the 
various types of care, some of the results obtained 
even from the most prominent expert centers might be 
inconsistent. Applying statistical averaging methods 
to such inconsistences may give confusing results 
even leading to statements that a specific type of care 
does not effectively influence PD patients. 
We might face similar problems when explaining 
factors that result in longer, better, and more active 
lives of people with Parkinson’s. Generally we agree 
that controlling depression and movement therapies 
is the main factor in helping patients. However, differ-
ent clinics use different methods in dealing with de-
pression. They also may interpret differently meanings 
of the UPDRS that results in different therapies. These 
problems are articulated in the popular statement “No 
two people face Parkinson’s in quite the same way.” 
People vary substantially in their combination 
of symptoms, rate of progression, and reaction to 
treatment. Again, averaging patients’ symptoms as the 
effects of different types of care gives a very crude 
approximation of the results. If we would like to im-
prove this analysis, we need to take into account 
a great variety of patient symptoms and inconsistent 
effects of care in different PD clinics. 
Therefore, we propose to extend the statistical analysis 
by data mining and machine learning (ML) meth-

ods which give a higher meaning to an individual 
patient’s symptoms and their individual developments. 
In consequence, our methods will suggest a specific 
treatment adjusted to different individual patients that 
may lead to slowing down their symptoms and im-
proving their quality of life. These treatments will be 
proposed on the basis of learning algorithms that 
intelligently process the data of the individual patient 
in a specific way. Our method of symptom classifica-
tion will be similar to complex object recognition by 
a visual system. The ability of the visual system 
to recognize various objects arises in the afferent, 
ascending pathways that classify the properties 
of object parts from simple attributes in lower areas, 

to more complex ones in higher areas. These primary 
classifications are compared and adjusted by interac-
tion with all the object (“holistic”) properties (repre-
senting visual knowledge) on all levels by descending 
pathway influences [1]. These interactions on multiple 
levels between measurements and knowledge with the 
help of learning can differentiate subtle variations 
in symptoms and treatments similar to studying com-
plex visual objects [2,3]. By using predictions with the 
support of machine learning algorithms, we will dis-
cover if these subtle variations are significant enough 
to improve the patient’s treatment. 
The popular statement that “No two people face Par-
kinson’s in quite the same way”may describe the Par-
kinson’s patient's point of view on his/her disease. 
The patient’s self perception is subjective and depends 
on many factors but mostly on emotional states that 
are often related to depression and motor impairments. 
Social support or its lack is also an important factor. 
Furthermore, the opinions of neurologists who follow 
a patient’s symptoms are important for the patient. 
However, the opinion of the neurologist is more ob-
jective as supported by objective but mostly not very 
precise interviews, tests and measurements of the 
patient’s symptoms like e.g. UPDRS. Other views 
on the patient’s state come from psychologists, care-
givers or family members. All these opinions describ-
ing the patient’s actual status are often not consistent 
and sometimes even contradictory especially if the 
patient’s conditions fluctuate with medications and the 
time of day or night. To make things even more com-
plicated, there is strong dependence between different 
symptoms, for example, a caregiver can perform exer-
cises with a patient that make the patient feel good, 
but in reality may not improve the patient’s motor 
skills. 
There are many well-established patient symptom 
measures such as the most common Hoehn and Yahr 
scale and total UPDRS. However, even if non-motor 
symptoms and motor complications are common 
in PD, UPDRS Parts I and IV that focus on non-motor 
symptoms are used infrequently. In most “PubMed” 
publications between 1998–2011, in all the studies 
that have used UPDRS, 163 studies (97.6%) had in-
cluded only UPDRS part III [4]. There are many dif-
ferent measures of PD symptoms describing actual 
patient state and their values mostly, like UPDRS, 
increase with time and disease progression. As there 
is actually no cure that can stop Parkinson’s disease 
development, there are only some possibilities to slow 
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it down. The main purpose of this paper is to analyze 
such means by using knowledge extracted from the 
symptoms. 
We will demonstrate our approach using several ex-
amples of patients with DBS (deep brain stimulation) 
therapy which is mostly used in more advanced PD 
stages. In order to be effective, stimulating electrodes 
must be placed precisely in or near the STN (subtha-
lamic nucleus). As the STN is in most cases invisible 
in the MRI, the standard procedure is related to the 
intra-OP neuronal activity recording that helps 
in verifying that the microelectrode tip is in/near the 
STN. As it is not a straight-forward task, and we have 
described (see below) how to increase and automatize 
this procedure using several different approaches: 
by looking at changes in the power spectra of the high 
and low (local field potentials – LFP) frequency back-
ground activity, or by using different algorithms 
to find properties of the spike train related to the STN. 
We have also discussed methods of finding the exact 
position of the stimulating electrode in relationship 
to the STN. What effects can be expected by stimula-
tion of the specific contact of the DBS electrode as 
a function of its relationship to different STN parts? 
The central and peripheral effects related to the DBS 
electrode position can be estimated and precisely 
measured in different effectors. On the one hand, 
we have described correlations between UPDRS and 
Euler hip angle changes of the gait. On another central 
side, we have measured the correlation between  
UPDRS and eye movement pathologies. All these 
various measurements might help in more precise 
estimation and control of PD symptom development 
and in consequence improve patient care. 

METHODS 

Let us assume that the complex shape in Fig. 1 repre-
sents the set of different symptoms. Our methods can 
measure of symptom values with a certain precision 
represented by squares (granules). Therefore, on the 
basis of our measurements we can get two approxima-
tions of the patient’s real symptoms: the lower ap-

proximation set as squares inside the curve (Fig. 1 
black squares) and the upper approximation set is 
represented by squares that cover the whole shape 
(gray and black squares). The lower approximation set 
represents all the actual symptoms (values) that are 
certain, whereas the upper approximation set repre-
sents symptoms (values) that are not all certain. The 
white squares represent symptoms that are not present 
in the patient. The set between the upper and lower 
approximations represent the border region (gray 
squares). This region represents symptoms that fluctu-
ate in time or symptoms that cannot be exactly deter-

mined or measured by the neurologist. We can nor-
malize the symptom values in a similar way as  
UPDRS values (0–4). In this case, if there is no pa-
thology/symptoms or movements are normal, all the 
values are 0. Therefore for a normal person, the shape-
describing the symptoms consist only of a point. 

 
Fig. 1. Diagram showing possible set roughness in symptom classifica-
tion. 
Ryc. 1. Schemat obrazujący możliwy zbiór niepewności w klasyfikacji 
objawów. 

 
In this model, different patients may have shapes with 
different complexities. The progression of the disease 
when symptoms become more severe correlates with 
shape expansion. It expands differently in different 
patients but the area always increases as the symptom 
values become larger. We would like to find in which 
direction the expansion is the fastest and try to slow 
it down. However, we still have several issues with 
this simple model. At first, the symptoms are not in-
dependent so that the fastest expansion may cause or 
may be caused by a change in other symptoms. The 
sensitivity of our measurements is limited, so we do 
not sense symptom changes in the border region, etc. 
Also another problem is related to the different 
weights of symptoms, for example, the danger of 
falling is more important than a slow or asymmetric 
walk. There is a subjective, patient’s point of view, 
nevertheless, the doctor’s role is to find which symp-
toms are the most important to follow. Neurologists 
get this knowledge from their experience, but we 
would like to extract this knowledge from the data-
base. Our data mining methods can tell us which 
measurements are important for our classifications. 
However, in general, in order to find which symptom 
has the fastest growth, we need to interview and ob-
serve patients. An experienced neurologist can find 
such differences even if the total UPDRS does not 
change significantly. Nonetheless, even in the best 
clinics, experienced neurologists have limited time 
and cannot follow every patient all the time in order 
to perform more precise measurements. The long-term 
purpose of our approach is to propose a solution 
to these problems. 
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1. Theoretical Basis 

The data structure is an important point of our analy-
sis. It is represented in the form of an information 
system or decision table. We define after [5] an infor-
mation system as S = (U, A), where U, A are nonemp-
ty finite sets called the universe of objects and the set 
of attributes, respectively. If a A and u U, value 
a(u) is a unique element of V (where V is a value set). 
We define the lower approximation of symptoms set 
X  U in relation to symptom attribute B as    X = {u 
U: [u]B   X }, and the upper approximation of X 
as     X = {u  U: [u]B  X  }. In other words, all the 
symptoms are classified into two categories (sets). The 
lower approximation set has a property that all symp-
toms with certain attributes that are a part of set X, and 
the upper movement approximation set has a property 
that only some symptoms with B attributes are a part 
of X (for more details see [5]). The difference between        
    X and    X is defined as the boundary region of 
X:BN B (X). If BN B (X) is an empty set, then X is exact 
(crisp) with respect to B; otherwise if BNB(X)   and 
X is not exact (i.e., it is rough) with respect to B. We 
say that the B-lower approximation of a given set X is 
the unified set of all B-granules that are included in 
set X, and the B-upper approximation of X is of the 
union of all B-granules that have a nonempty intersec-
tion with X. System S will be called decision table  
S = (U, C, D) where C is the condition and D is the 

decision attribute [5]. In the table below (tab. I), as 
an example, decision attribute D, based on expert 
opinion, is placed in the last column, and the condition 
attributes measured by a neurologist, are placed in 
other columns. On the basis of each row in the table, 

the rules describing the symptoms of each patient 

can be proposed. As you can see, these rules have 
many particular conditions. The main concept of our 
approach is to describe different symptoms in differ-
ent patients by using such rules. On the basis of these 
rules, using the modus ponens rule, we want to find 
universal rules for different symptoms and different 
patients. 
However, the symptoms, even for the same treatments 
are not always the same; therefore our rules must have 
certain “flexibility”, or granularity, which can be in-
terpreted as the probability of finding certain symp-
toms in a group of patients under consideration. 
The granular computation simulates a way in 

which neurologists interact with patients. This way 
of thinking relies on the ability to perceive a patient’s 
symptoms under various levels of granularity (i.e., 
abstraction) in order to extract and consider only those 
things that serve a specific interest and to switch 
among different granularities. By focusing on differ-
ent levels of granularity, one can obtain different lev-
els of knowledge, as well as greater understanding of 

the inherent knowledge structure. Granular computing 
is thus essential in human-like, intelligent problem 
solving behaviors in problem-specific tasks. 
The indiscernibility relation of any subset B of A or 
I(B), is defined [5] as follows: (x, y) I(B) or xI(B)y if 
and only if a(x) = a(y) for every a B, where a(x) V. 
I(B) is an equivalence relation, and [u]B is the equiva-
lence class of u, or a B-elementary granule. The fami-
ly of all the equivalence classes of I(B) will be denot-
ed as U/I(B) or U/B. The block of partition U/B con-
taining u will be denoted by B(u). Having the discern-
ibility relation, we define the notion of reduct B⊂A  
as a reduct of the information system if IND(B)  
= IND(A) and no proper subset of B has this property. 
In the case of a decision tables decision, the reduct is 

set B⊂A of attributes such that it cannot be further 

reduced and IND(B) ⊂ IND(d). The decision rule is 
a formula of the form (ai1 = v1) ∧... ∧ (aik = vk) ⇒d = 
vd, where 1≤ i1 < ... < ik ≤ m, vi∈ Vai. Atomic subfor-
mulas (ai1 = v1) are called conditions. We say that rule 
r is applicable to an object, or alternatively, the object 
matches the rule, if its attribute values satisfy the rule. 
With the rule we can connect some numerical charac-
teristics such as matching and support. 
In order to replace original attribute ai with a new, 

binary attribute which says whether an actual attrib-
ute value for an object is greater or lower than c (more 
in [6]), we define c as a cut (cut sets). As cut for at-
tribute ai∈A, such that Vai is an ordered set, we will 
denote the value c ∈Vai. The template of A is a propo-
sitional formula:  vi∈Vai. A generalized template is 
the formula of the form ∧(ai∈Ti) where Ti⊂Vai. An 
object satisfies (matches) a template if for every at-
tribute ai (ai = vi) where ai∈ A. The template is a natu-
ral way to split the original information system into 
two distinct sub-tables. One of those sub-tables con-
sists of objects that satisfy the template, the second 
one of all the others. A decomposition tree is defined 
as a binary tree, whose every internal node is labeled 
by a template, and an external node (leaf) is associated 
with a set of objects matching all the templates  
in a path from the root to a given leaf [6]. We use the 
decomposition tree in ML algorithms. 

2. Intraoperative Recordings 

I will describe in short the surgery performed at 
UMass Medical School as described in detail in [7]. 
Similar surgeries were performed by Dr. Kwiek in 
MUS [8,9] and Dr. Mandat [10] in the Institute of 
Psychiatry and Neurology (Warsaw). Surgical plan-
ning at UMass utilized BrainLab iPlan Stereotaxy 2.6 
(BrainLAB AG, Germany), which allows for multi-
planar imaging of the target and the planned trajecto-
ry(s). T2 weighted and enhanced T1 MRI sequences 

B

B

B B
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were acquired pre-operatively. In relationship to the 
midcommisural (AC-PC) point, the target is expected 
to be 11–12 mm lateral, 3 mm posterior and 4 mm 
below. According to the anatomy atlas, the usual tra-
jectory penetrated the following structures: anterior 
thalamus, zona incerta, H2 field of Forel, STN, and 
substantia nigra (SN). 
All the electrophysiological recordings were per-
formed at UMass using a Guideline 4000 (FHC, Inc. 
Bowdoin, ME). The neural signals were recorded by 
one or more parallel tungsten microelectrodes. The 
recordings started 20 or 10 mm above the target (dif-
ferent centers). The microelectrode(s) was (were) 
advanced at 1 to 0.3 mm increments. Ten second re-
cordings were obtained at each point. The recordings 
were band-pass filtered in two frequency ranges: high 
frequency (300–5000 Hz), digitized at 24 kHz related 
to the spike trains and low frequency range (5– 
–500 Hz) with a sampling rate of 1000Hz related 
to the local field potentials and stored for offline analy- 
sis [7]. 
The electrophysiological criteria used by neurologists 
to distinguish the STN were an increase in the back-
ground activity, an increase in the neuronal firing, 
and/or alteration of neural firing by passive movement 
of contralateral limbs. The entry to the STN corre-
sponds to the dorsal border and the exit from the STN 
to the ventral border.   
Off-line analyses were performed with software writ-
ten in Matlab (Matworks, Natick, MA). STN detection 
is based on the MUA profile (multi-unit activity) 
which is characteristically elevated within the STN. 
Large spikes were automatically removed by an unsu-
pervised Daubechies-based wavelet algorithm that is 
a spike-oriented modification of the standard wavelet-
denoising algorithm with soft-thresholding [7]. The 
MUA was calculated in the frequency domain. The 
power spectral density was calculated over 10-second 
segments of despiked neuronal activity or LFP with 
a Fourier transform (FFT) weighted by a Hamming 
window. The MUA was obtained by integrating the 
500–2000 Hz band in the power spectral density (psd) 
[7]. The LFP was obtained by integrating the 20– 
–35 Hz band in psd. 
The dorsal STN border was defined as the first site 
along a track where the MUA exceeds the MUA base-
line by at least 50% and elevation of the MUA is sus-
tained. The baseline MUA was obtained as an average 
MUA from recordings ≥ 10 mm above the target that 
usually correspond to thalamic activity. The ventral 
border was defined as the last site along a track where 
the MUA reduction was 50% compared to the average 
MUA within the STN and the decline in MUA is sus-
tained [7]. Similar criteria were used for the LFP. 

3. DTI/MRI registration to anatomical atlas 

In this section, we describe how to define the relations-
hip between the electrode’ position and STN borders. 
In short, in order to determine the anatomical posi-
tions of the structures of interest, we performed regis-
tration of the individual patient’s brain MRIs with the 
brain atlas and used postoperative MRI or CT to lo-
cate the exact position of the implanted DBS elec-
trodes [11]. In addition, in order to find which part of 
the cortex might be stimulated by different contacts, 
we used preoperative diffusion weighted images 
(DWI) acquired as part of the standard procedure for 
each PD patient. However, one extra condition must 
be fullfilled in order to get highly precise measure-
ments, MRI data has to have a small slice thickness 
and equal spacing in all directions. We analyzed data 
from nine patients with advanced Parkinson disease 
(PD), and with implanted DBS electrodes. As the 
image processing tool we used the 3D Slicer (Harvard 
Medical School) public domain software. As in the 
postoperative images the electrode contacts can are 
not visible, we estimated their positions by using the 
physical parameters of the used stimulating electrodes 
(Medtronic 3389) [12]. In order to estimate the traced 
areas, coordinates of the brain have to be normalized 
by a so-called AC-PC transform (3D Slicer). The 
connections between M1, SMA and STN have soma-
totopic properties that gave us the basis to estimate the 
expected motor effects related to the stimulation of 
different contacts [13,14]. 

4. MoCap (Motion Capture) method 

In our kinematic movement recording set-up, we used 
a 10-camera, 3D motion capture system (MoCap- 
-Vicon) as described in [16]. The 3D body position of 
the patient was analyzed based on 39 reflective mark-
ers (tracked at 100 FPS) placed on major body seg-
ments: 4 on the head, 5 on the torso, 14 on the left and 
right side of the upper limbs and 16 on the left and 
right side of the lower body. Two Kistler Platforms 
were also recorded to analyse the Ground Reaction 
Forces (GRF) during the patient’s movements, but we 
will not present GRF data in this paper (Fig. 1) [15]. 
We performed experiments on 12 Parkinson Disease 
(PD) patients who have undergone surgery in the 
Dept. of Neurosurgery, Medical University of Silesia 
(MUS, Poland) in order to implant a Deep Brain 
Stimulator (DBS) to improve their motor skills. The 
patients were qualified for surgery and observed post-
operatively in the MUS Dept. of Neurology [9,10]. All 
the experiments were performed in the MoCap lab of 
PJIIT in Bytom (Polish-Japanese Institute of Infor-
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mation Technology, Bytom, Poland). The PD patients 
performed normal walking under four experimental 
conditions (S1–S4 – see below) defined by pharmaco-
logical medication and subthalamic nucleus (STN) 
electrical stimulation (DBS). 

 
Fig. 2. MoCap set-up. 
Ryc. 2. Konfiguracja Mo-Cap. 

5. Eye movement measurements 

The characteristic motor symptoms of PD, predomi-
nantly due to progressive degeneration of nigral do-
paminergic neurons, are initially subtle and impact 
purposeful movement, and are often difficult to diag-
nose and differentiate from other age related symp-
toms. An easy and objective method to measure PD 
patient symptoms is by testing the patient’s eye 
movements. 
We conducted horizontal RS (reflexive saccades) 
measurements in nine patients with Parkinson’s dis-
ease (PD) in four sessions: S1: MedOffDBSOff, S2: 
MedOffDBSOn, S3: MedOnDBSOff, S4: 
MedOnDBSOn. Changes in motor performance, be-
havioral dysfunction, cognitive impairment and func-
tional disability were evaluated in each session ac-
cording to the UPDRS. RS were recorded by a head-
mounted saccadometer (Ober Consulting, Poland). 
We used the infrared eye track system coupled with 
the head tracking system (JAZZ-pursuit – Ober Con-
sulting, Poland) in order to get high accuracy and 
precision in eye tracking in order to compensate the 
possible subject’s head movements relative to the 
monitor. Therefore, the subjects do not have to be 
positioned in an unnatural chinrest. A patient was sat 
at the distance of 60–70 cm from the monitor with his 
head supported by the chair in order to minimize head 

movements. We measured the fast eye movements 
in response to a spot of light switching off-on and 
moving horizontally from the straight eye fixation 
position (0 deg) to 15 deg to the left or 15 deg to the 
right after an arbitrary period of time: 0.5–1.5 s. When 
the patient fixates his/her eyes on the spot of the mid-
dle marker (0 deg), the spot will change color: from 
white to green, which means that the patient should 
perform RS (reflexive saccades); or from white to red 
meaning to perform AS (antisaccades). Then the cen-
tral spot will be switched off and one of the two pe-
ripheral targets, selected at random with equal proba-
bility, will be illuminated instead. The patient has to 
look at the targets and follow them as they move 
in the RS task or make opposite direction saccades in 
the AS task. After making a saccade to the peripheral 
target, the target will remain on for 0.1 s and then 
another trial will begin. In each test the subject had to 
perform 20 RS and 20 AS in a row in Med-off in two 
situations: with DBS off (S1) and DBS on (S2). In the 
next step, the patient took medication and had a break 
for a half to one hour, then the subject performed the 
same experiments with DBS off (S3) and DBS on 
(S4). In this work, we have analyzed only RS data 
using the following population parameters averaged 
for both eyes: delay mean ± SD; amplitude mean ±  
± SD; max velocity mean ± SD; duration mean ± SD. 

RESULTS 

1. Intraoperative Recordings 

The purpose of this part is to demonstrate an increase 
in the precision and automaticity, if in addition to the 
STN border found by the neurologist-neurosurgeon 
team, one uses supplementary signals: power spec-
trum of the background activity – MUA and/or power 
spectra of LFP (p_LFP). We have already demonstrat-
ed good correlations between MUA and IOM (intra-
OP monitoring – the standard procedure) using the 
statistical approach. Here we have demonstrated the 
use data mining (RSES) and machine learning (ML) 
methods. 

Spike Trains, Background Activity  
and Local Field Potentials 

As we have described in the Methods section, in the 
UMass experiments we have compared STN border 
estimations by three different methods: 1) classical 
“golden standard” IOM (intra-operative monitoring); 
2) MUA – an increase in the power spectrum in the 
high frequency background multi unit activity 
(HFBA) [7]; 3) p_LFP – an increase in the power 
spectrum of the local field potentials. 
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In Fig. 3 we have plotted the results of these three 
methods together on one graph. The gray area is relat-
ed to the IOM found during surgery by the neurosur-
geon-neurologist team. The continuous line represents 
the spline approximation of the HFBA power spectra 
– MUA (interrupted line curve). There is very good 
agreement between IOM and MUA. The third curve 
(interrupted line) represents the power spectra of the 
LFP with the STN borders estimation. This curve 
is not very exact but only in approximate agreement to 
other measures. A question arises if the measure of the 
LFP can help in STN border estimation, even if it is 
not very precise measure. 
As we have demonstrated before [7], the mean differ-
ence between IOM (intra-OP monitoring) and MUA 
(multi-unit power spectra background activity) of the 
dorsal/ventral border was 0.31 ± 0.84/0.44 ± 0.47 mm. 
The correlation between the dorsal border/ventral 
border positions obtained by IOM and MUA was 0.79, 
p < 0.0001/0.91, p < 0.0001 [7]. However, we did not 
ask the question: how well could we predict the STN 
borders on the basis of MUA in individual patients? 
For example for Pat 10 L, we have got good agree-
ment between IOM and MUA for the STN dorsal 
border and a large difference between both methods in 
the STN ventral border estimation on the left side. 
What difference should we expect in both methods 
agreement for the right side for which we have only 
IOM measurements? 
We did not respond to the above questions using data 
mining RS theory, as in this case the question was too 
demanding for our limited number of measurements. 
However, we were more successful in responding to 
a similar question in another series of the intra-OP 

recordings [16,17,18,19] performed by the team of Dr. 
Mandat [10]. All the recordings were divided into two 
groups: related to spike trains and to background ac-
tivity. The spikes were detected on the basis of their 
amplitude and sorted into different shapes. In the first 
group, the main properties (attributes) were: 1) aver-
age number of recorded spikes; 2) spike burst ratio 
(percentage of intra-spike intervals shorter than  
33 ms). However, these attributes may give both false 
positive (highly active non STN neurons) and false 
negative (less active STN parts) results. In the second 
group, the main attributes were: 1) relative amplitude 
of the background activity (80th percentile – denoted 
as PRC80; 2) Root Mean Square (RMS) calculated for 
the recorded signal; 3) LFB (low frequency back-
ground power) for frequencies below 500 Hz; 4) HFB 
(high frequency background power) for frequencies 
500–3000 Hz [16,17]. Additional attributes obtained 
by moving the average of the primary attributes [18] 
were also used. Ciecierski et al. [19] have used in addi-
tion to RSES also the Weka Random Forest classifier. 
Both methods in the 10-folds cross validation gave 
excellent discrimination between recordings made 
within the STN and outside of it. It was based on the 
comparison of neurologist expertise with the results 
of classifications. The sensitivity was about 93% and 
specificity about 99% [19]. The second coefficient 
is even more important as it minimizes the probability 
of labeling a non-STN region as STN. These results 
are very promising as they were based on not only 
very large numbers of recordings (over 16000) but 
also on many different attributes describing signals 
recorded at different depths. As the system is already 
used in on-line surgeries, it may lead to increasing the 
speed and precision of DBS surgery. 

  
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3. Comparison of MUA – multi unit HFBA (high frequency background activity) and LFP (local field potentials) 
power spectra with STN borders determined by classical IOP (intra-OP monitoring – gray area). 
Ryc. 3. Porównanie MUA /HFBA (aktywność tła o wysokiej częstotliwości) i LFP (lokalne potencjały polowe) widma 
mocy z granic określonych przez STN klasycznej IOP (monitoring wewnątrz PO – szara strefa). 
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Fig. 4. Comparison of STN dorsal and ventral border determination by standard intra-op monitoring (IOM) 
and multi unit background activity (MUA). 
Ryc. 4. Porównanie grzbietowej i brzusznej granicy STN wyznaczonej przez standardowy monitoring 
(IOM) i aktywności tła (MUA). 

 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Two MRI images of same area of Pat#5 with different views. They are mainly sagittal also with axial and coronary MRI images of left hemisphere 
with marked neural pathways between contact #1 left DBS electrode and different cortical areas. A, P – anterior, posterior; AC, PC – anterior, posterior 
commiserate that determine area of interest: between preCS and CS; SMA – supplementary motor area; M1 – primary motor area; CS – central sulcus; 
paraCS – para-central sulcus; preCS – precentral sulcus; lip, hand, foot – somatotopic areas representing lip, hand, foot. The STN is visible in the left 
image. 
Ryc. 5. Dwa obrazy MRI tego samego obszaru. Obrazowanie w płaszczyźnie strzałkowej również z osiowymi i wieńcowymi obrazami MRI lewej półkuli 
z oznakowanymi szlakami nerwowymi między elektrodą DBS i różnymi obszarami kory. STN widoczny po lewej stronie obrazu. 

 
2. Improving DBS parameters in relationship to 

electrode contact positions 

In this session, we present the MRIs of one PD patient 
with implanted DBS electrodes. Fig. 5 shows the sag-
ittal images of pat#5 left hemishere with marked tracts 
generated from contact #1 of the DBS electrode. 
The STN tracts have endings in the primary (M1) and 
supplementary motor areas (SMA). In M1 they come 
near the area representing the “hand”, in SMA, poste-
rior to the precentral sulcus near the area representing 
the “foot”. 
The results of patient #5 pre-Op neurological exami-
nations were: dystonic cramps in feet, freezing gait, 
falls, mild depression, rigidity, minor tremors in legs 

and hands, cramping in left foot, later in both feet. 
The effects of DBS contact #1 stimulations on the left 
side were: improved dexterity and limb tone was nor-
mal in the right upper extremities, restless leg symp-
toms no longer present. Fig. 5 supports such findings, 
as there are tract endings near the foot and hand areas 
in the left hemisphere. Our question was if on the 
basis of our anatomical tracts we can predict which 
contact and what the amplitude of stimulation should 
be in order to improve particular symptoms.  
In order to test this possibility, we divided our data 
of 20 measurements into 4 random groups. 
We used 3 groups together for the training and tested 
the fourth group by applying rules generalised from 
the training sets. In the next step, we changed the 
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tested group for one training group and checked  
our predictions again. We performed testing of all  
the groups by the cross validation method. We ob-
tained a total accuracy of 75–80%, which gives good 
predictions for such a small dataset [11]. By using  
this method we may increase the effectiveness 
of choosing optimal stimulating parameters as well as 
try to test parameters that may improve particular 
symptoms. 

3. Gait measurements and classifications 

In this simple example we concentrate only on PD 
pathologies of normal gait, and present several differ-
ent approaches to compute important features of gait 
abnormalities. This is a continuation of our previous 
experimental results concerning the examination 
of Parkinson’s disease (PD) involving a bilateral sub-
thalamic nucleus stimulation (DBS) patient in the 
MoCap laboratory. At first, in the statistical approach 
we calculate the mean changes of gait as the effects 
of medication and DBS (deep brain stimulation of 
STN). In the second approach, we present the gait 
parameter changes in the phase plots that demonstrate 
different dynamics in different patients. In the third 
part, we apply the data mining approach related 
to application of the Rough Set Theory in order to 
generate decision rules for all our patients and all the 
experiments. We have tested these rules by comparing 
training and test sets using machine learning methods. 
There have been many studies where the diagnosis of 

human gait abnormalities is measured in a more pre- 
cise way than the result of the UPDRS test. In our 
previous work, we computed indexes for neurological 
gait abnormalities for PD patients with DBS [15]. 
We found a strong influence of medication and DBS 
on the decomposition index of the knee and hip, and 
hip and ankle. Therefore in this section we have con-
centrated on analysing the dynamics of hip move-
ments of the gait [20]. 
However, the present approach is different from our 
previous work as now we intend to use not only the 
statistical analysis of certain indexes, but also the data 

mining approach based on the Rough Set Theory. 
This new approach not only summarizes the actual 
measurements but also gives some strong predictions 
that might be better than standard indexes, which can 
also predict the effects of different therapies for PD 
patients. As the effects of medications and DBS are 
very different in different patients, making predictions 
is a very difficult task and we present here only the 
preliminary data. 
The mean for all patients' UPDRS III improved with 
sessions, S1: 53± 4 (SE), S2: 35 ± 6, S3: 22 ± 3.5, S4: 
18 ± 3. The mean duration of three consecutive steps 
were similar between sessions: S1: 3.9 ± 0.2 s (SE), 
S2: 3.6 ± 1.6 s, S3: 3.6 ± 1.4 s, S4: 3.5 ± 1.2 s. These 
values are similar to the slow walk of a healthy per-
son. In this study, we have limited our analysis to  
x-direction changes in the hip angles for the left and 
right legs during three consecutive steady steps of all 
PD patients [20]. 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 
 

Fig. 6. Hip Euler angle during walking for right and left sides. In addition to hip angle changes (thin line) their smoothed 
changes (thick lines) by emd (elementary mode decomposition) were plotted together. In lower part, two phases of gait 
were marked. Velocities in both gait phases are plotted below. 
Ryc. 6. Zmiany biodrowego kąta Eulera w trakcie chodu dla prawej i lewej strony. 
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Fig. 7. Parallel changes in UPDRS III and left- and right-hip x-angle extensions, and left-, right maximum velocities 
during swing and stance (marked as max/min velocity) phases as effects of medication and STN stimulation 
(sessions 1 to 4). Straight lines approximate UPDRS decrease with session number and velocity increase 
proportionally to session number. Hip amplitude stays approximately independent of session number (interrupted 
line). 
Ryc. 7. Równoległe zmiany w UPDRS III lewego i prawego stawu biodrowego jako skutki działania leków 
i  stymulacji STN (1 do 4). 

The means of the maximum x-direction hip angles 
extension (swing phase) for the left (L) and right (R) 
sides were symmetric and improved non-significantly 
between sessions, S1: L: 29 ± 3 deg (SE), R: 29 ±  
± 3 deg (SE), S2: L: 32 ± 3 deg, R: 33 ± 3 deg, S3: L:  
34 ± 3 deg, R: 36 ± 3 deg, S4: 35 ± 4 deg R: 36 ±  
± 3 deg. We also found non-significant improvements 
for the x direction hip angle flexion (stand phase) 
between sessions. However, we have observed more 
significant improvements in the maximum velocity 
of the x-direction hip angles extension (velocity  
in the swing phase): S1: L: 123 ± 8.5 deg/s, R: 124 ±  
± 9.5 deg/s; S2: L: 142 ± 6 deg/s, R: 140 ± 8.4 deg/s; 
S3: L: 170 ± 6.5 deg/s, R: 169 ± 9 deg/s; S4: L: 173 ± 
± 6 deg/s, R: 174 ± 9 deg/s; and hip angle flexion 
speed (velocity in the stand phase): S1: L: 71 ±  
± 8.5 deg/s, R: 75 ± 5 deg/s; S2: L: 82 ± 6 deg/s, R: 93 
± 6 deg/s; S3: L: 108 ± 7 deg/s, R: 127 ± 8 deg/s; S4: 
L: 120 ± 9 deg/s, R: 120 ± 9 deg/s (Fig. 7) [20]. 
Notice that the most significant increase in velocities 
was between sessions S1 and S3, so it is an effect 
of medication. On the basis of mean values for all our 
patients, we can say that medication as well as DBS 
improve patients’ UPDRS and (hip) movement veloci-
ties. L-DOPA as well as DBS are well-established 
methods so one would expect such results. However, 
individual patients are very different and even 

in our small patient population we have observed 
significant variability of the medication and stimula-
tion effects. Therefore, we would like to learn if we 
can group the effects of medication and DBS therapies 
of individual patients into several categories.  
In addition to statistical analysis, we have tried two 
different methods; the first one was related to dynam-

ical system analysis and the second to the machine 

learning approach. In our first method, we compared 
the phase plots for individual patients in four sessions 
S1 to S4. We plotted the movement trajectories in the 
phase space as changes of the right hip x-angles as 
a function of the left hip angle changes during three 
steps of stable walking. We found different types 
of attractor changes as the effect of medication and 
stimulations, as demonstrated in the following figures. 
In summary, stimulation and medication generally 
increase the amplitude and shift trajectories related 
to PD patient walking activity. It is not mainly related 
to the patient's gait speed as the mean gait durations 
were similar in all the sessions. These plots might give 
basis for the dynamical model of gait in different 
sessions but as demonstrated, in different patients 
changes of the particular trajectory are difficult to 
predict as they are effects of the system complexity 
and basal ganglia regulatory numerous loops interac-
tions. 
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Fig. 8. Phase plots of right against left x direction hip angles during walking in one patient. Left: 
stimulation and medication extend trajectories and shift them up and right. Right: medication 
extends trajectories and shifts them down. 
Ryc. 8. Wykresy fazowe z lewej na prawą w kierunku bioder i kątami podczas chodu u jednego 
pacjenta. Po lewej: stymulacja i leki wydłużają trojektorie i przesuwają je w górę i na prawo. 
Po prawej: lek wydłuża trajektorie i przesuwa je w dół. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Phase plots of right against left x hip angles during walking in one patient. Left: v. small effects 
of stimulation alone, medication also has small effects: extends trajectories and shifts them up. Right: 
v. small differences between S1, S2 and S3 in S4 (MedON, StimON) shift to right. 
Ryc. 9. Wykresy fazowe – prawy i lewy kąt biodrowy podczas chodzenia u jednego pacjenta. 
Po lewej: małe efekty stymulacji, lek również wywiera słabe efekty: rozciąga trajektorie i przesuwa je. 
Po prawej: małe różnice między S1, S2 i S3 w S4 (Medon, Stimon) przesunięcia w prawo. 
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Fig. 10. Phase plots of right against left x hip angles during walking in one patient. Left, additive 
effects: both stimulation and medication alone shift trajectories up with extension, both together have 
stronger effects. Right, when medication OFF, stimulation extends amplitude of trajectories, 
medication increases their amplitude even more and shifts down, when MedON and StimON 
trajectories shift again up. 
Ryc. 10. Wykresy fazowe kątów biodrowych podczas chodzenia u jednego pacjenta. Po lewej stronie 
działanie addytywne: zarówno stymulacja, jak i same leki powodują przesunięcia trajektorii 
z rozszerzeniem, razem mają silniejsze działanie. Po prawej stronie, leki OFF, stymulacja zmniejsza 
amplitudę trajektorii. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. Parallel changes in left-right angle trajectories amplitude, x- and y- coordinates during walking 
as effects of medication and STN stimulation. 
Ryc. 11. Równoległe zmiany lewa-prawa trajektorii, kąt amplitudy, współrzędne X i Y podczas spaceru 
jako działanie leków i stymulacji STN. 

 
4. Data Mining – Rough Set System Approach 

As described above, we have used RSES 2.2 (Rough 
System Exploration Program) [21] in order to find 
regularities in our data. At first, our data was placed 
in the decision table as originally proposed by Pawlak 
[5]. In each row of the decision table there are the fol-

lowing condition attributes: P# – patient#, S# – Ses-
sion#, t – time, mxaL/mxaR/mnaL/mnaR – max/min 
Left/Right hip x-direction angles, mxVaL/mxVaR/ 
mnVaL/mnVaR – max/min Left/Right hip x-direction 
velocity, and UPDRS III as measured by the neurolo-
gist in the last column. There are data from two out 
of 12 patients in the table below: 
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Table I. Extract from information table 
Tabela I. Część tabeli informacyjnej  

 
P# S# time mxaL mxaR mnaR mnaL mxVaL mxVaR mnVaL mnVaR UPDRS 

59 1 455 29.1 32.3 -0.04 -0.86 0.91 0.91 -0.60 -0.66 30 

59 2 350 34.7 35.6 -1.25 -9.07 1.77 1.77 -0.99 -1.31 20 

59 4 350 31.9 35.9 -3.29 -8.19 1.67 1.67 -1.00 -1.24 6 

61 1 305 20.7 22.9 -0.92 1.35 1.28 1.28 -0.61 -0.69 60 

61 2 440 22.4 25.9 -8.05 -5.87 1.31 1.31 -0.53 -0.68 40 

61 3 410 21.1 25.1 -23.4 -21.77 1.98 1.98 -1.05 -1.30 21 

61 4 400 24.4 27.2 -12.0 -10.58 1.56 1.56 -0.93 -0.82 31 

 

The last column represents a decision attribute, then 
we can write for each row a decision rule as follows: 
('Pat' = 59)&('Sess' = 1)&('time' = 455)& (‘mxaL’ = 
29.1)&(‘mxaR’ = 32.3)&… = > ('UPDRS' = 30)     (1)     
We read this rule as follows : if for patient #59  
and session S1 and the time of his/her three steps was 
4.55 s and max left hip x-direction angle equals  
29.1 deg and max right hip x-direction angle equals 
32.3 deg and … then his/her UPDRS III for these 
conditions was 30. 
Therefore we have obtained 46 decision rules directly 
from our measurements as two from our 12 patients 
did not have all four sessions (e.g. pat#59). The main 
purpose of our analysis is to reduce these rules and to 
find regularities in our data. There are many possible 
steps as described in [21], below we will give some 
examples. 
At first, we would like to make the rules shorter  
and find that they apply to more than one case,  
e.g.: 
('Pat' = 60) = > ('UPDRS' = 9[2]) 2             (2) 
('mnVaL' = -0.6756) = > ('UPDRS' = 32[2]) 2       (3) 

it reads that Pat# 60 obtained UPDRS = 9 in two ses-
sions (eq. 2) and that the minimum velocity of the left 
hip equals -0.6756 (- is related to the direction of gait) 
was related to UPDRS = 32 in two cases (eq.3). In 
order to make the rules more effective, RSES can find 
optimal linear combinations of different attributes 
like: 

'mxVaL'*0.594+'mxVaR'*(-0.804)              (4) 
'mx_aL'*0.046+'mn_aL'*(-0.587)+'mn_aR'*0.807  (5) 

and these linear combinations may be added as addi-
tional attributes. Furthermore we can use the discreti-
zation procedure [21] that divides attribute values into 
non-overlapping parts: 

('Pat' = "(58.5,Inf)")&('Sess' = "(2.5,3.5)"|"(3.5,Inf) 
")&('mnVaL' = "(-0.9803,Inf)") = >  
('UPDRS' = 32[3]) 3                                                 (6) 

This reads that for patients that have numbers above 
58.5 and in sessions S3, S4 the minimum hip velocity 

was -0.9803 or above, then the UPDRS equals 32 in 
three cases (eq. 6).  
As we have demonstrated above, the rules determining 
the possible UPDRS are important but from the pa-
tient and doctor points of view, the first message 
should be whether the current therapy (medication 
and/or DBS) is effective. In order to find it, we need 
to correlate our measurements with the session num-
ber that is related to the specific procedure. In this 
case, the session number will become the decision 
attribute, in other words we change the columns of the 
decision table (tab. I) in such way that the session 
numbers are moved to the last column and become 
decision attributes. Notice that the session numbers 
may simulate symptom development in time (in the 
reverse direction S4, S3, S2, S1). In this case, we can 
obtain the following more general rules e.g.: 

('UPDRS' = 52|53|43|56|87|45|58|30|60) = >  
('Sess' = 1[11]) 11                                                     (7) 
('UPDRS' = 23|13|43|22|39|28|24|81|48|42) = > 
('Sess' = 2[11]) 11                                                     (8) 
('time' = 440|305|280|365|310) = > ('Sess' =  
2[6]) 6                                           (9) 

this means that session S1 (MedOFFStimOFF) is 
related to a high UPDRS in 11 cases (eq. 7), in session 
S2 (MedOFFStimON) the UPDRS values are general-
ly smaller in 11 patients (eq. 8) and in this session 
(S2) the duration of three steps is between 2.8 and  
4.4 s in 6 cases (eq. 9). We can also for example find 
rules in which the duration of three steps are similar as 
in (eq. 10): 

('time' = 350)&('Pat' = 56|57|62|59) = >  
('Sess' = 4[4]) 4                                        (10) 

In the next two examples, we will demonstrate how 
we can use general rules to predict the session number 
(or symptom development in time) or UPDRS values 
in – a group of patients that do not have these meas-
urements that may mimic a group of new patients. We 
will use the machine learning algorithms (ML). The 
main purpose of the ML approach is to demonstrate 
that the proposed rules are universal enough to predict  
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the results from new patients on the basis of already 
measured patients (test-and-train scenario [6,21]). In 
order to perform a such test, we divided our data set 
into two parts: one 60% of our data was the training 
set, and another 40% was the set that had been tested. 
We removed the decision attributes from the test set 
and compared them with the attribute values obtained 
from our rules. We used several different algorithms 
in order to find rules from the training set. The ex-
haustive algorithm [21] gave the best results described 
in the confusion matrix below:  

Table II. Confusion matrix for different session numbers (S1–S4) 
Tabela II. Macierz błędów dla sesji S1-S4 

 

Actual 

Predicted 

 2 333 44 11 ACC 

2 2 0 0 1 0.66 

3 1 0 1 2 0.0 

4 1 3 1 0 0.2 

1 0 1 1 2 0.5 

TPR 0.5  0.0  0.33  0.4  

TPR: True positive rates for decision classes, ACC: Accuracy for 
decision classes. 

Coverage for decision classes: 0.75, 1.0, 1.0, 0.66 
and global coverage = 0.8421, and global accuracy = 
= 0.3125. The best prediction was for session 2 with 
an accuracy of 0.66 (tab. II), and session 1 with accu-
racy of 0.5, the other session did not produce good pre-
dictions. The global accuracy over 31% was not very 
good. It is probably related to the small set of data. 
It means that we probably need to use more rules, 
for example, combinations of many attributes or/and 
expand the number of measured attributes for our 
analysis. 
However, the problem with this approach is that its 
results depend on which part of our measurements was 
taken as training and which part was tested. In order to 
test in an exhaustive manner or all the different possi-
bilities, we divided our experimental random set into 9 
subsets. In the next nine steps, we removed the deci-
sion attributes from one set and all the others used for 
training and prediction of the removed attributes from 
the test set. After 9 tests for all the parts, the results 
were averaged. We performed these tests for UPDRS 
as the decision attribute. Before all the tests the  
UPDRS values were divided into 6 classes, and the 
predictions were compared with the actual results for 
each class as summarized below in the confusion 
matrix: 

Table III. Confusion matrix for UPDRS as decision attribute 
Tabela III. Macierz błędów dla atrybutu decyzyjnego UPDRS  

     Predicted  

                                                             PREDICTED 

  50,69.5 -Inf,29.5 42.5,50 34,42.5 69.5,Inf 29.5, 34 

A 50, 69.5 0.67 0.0 0.0 0.0 0.0 0.0 

 -Inf, 29.5 0.0 1.67 0.0 0.11 0.11 0.0 

C 

 

42.5,50 0.0 0.0 0.11 0.0 0.0 0.0 

T 

 

34,42.5 0.0 0.11 0.0 0.0 0.0 0.0 

U 

 

69.5, Inf 0.0 0.11 0.0 0.0 0.0 0.0 

A 

 

29.5, 34 0.0 0.0 0.0 0.0 0.0 0.22 

L 

 

TPR 0.44  0.71  0.11  0.0 0.0 0.22 

 
TPR: True positive rates for decision classes, ACC: Accuracy for decision classes: 0.44, 0.72, 0.11, 0, 0, 0.22. Coverage for deci-
sion classes: 0.44, 0.60, 0.11, 0.11, 0.11, 0.17 and global coverage = 0.6, and global accuracy = 0.917. UPDRS decision classes: 
(50, 69.5), (- Inf, 29.5), (42.5, 50), (34, 42.5), (69.5, Inf), (29.5, 34). 
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If we look at the global accuracy, it is about 92% 

so we have good agreement between the predicted 

and actual UPDRS values. The reason is that over 

half of all the UPDRS values are below 29.5 

and they were very well predicted, as well as the 

UPDRS values between 50 and 69.5, (42.5,50), 

and (29.5,34). It is good a result even though the 

global coverage = 0.6 is not great. 

5. Reflexive saccades measurements  

and classifications 

The patients’ mean age was 51.1 ± 10.2 (SD) years, 
mean disease duration was 11.3 ± 3.2 years, mean  
UPDRS: S1: 66.6 ± 13.8 S2: 30.0 ± 16.3; S3: 58.1 ±  
± 13.5; S4: 22.3 ± 13.6; mean UPDRS III: S1: 42.7 ± 
± 11.3 S2: 17.8 ± 10.6; S3: 34.1 ± 10.8; S4: 10.9 ±

± 8.3; mean RS latencies: S1: 291.2 ± 93.1 ms, S2: 
199.6 ± 39.5 ms, S3: 232.9 ± 82.7 ms; S4: 183.2 ± 30 ms.  
The differences between latencies: S1–S2, and S1–S4 
were statistically significant (t-test p < 0.01), S1–S3 – 
– not stat. sig., similar to differences between  
UPDRS/UPDRS III: S1–S2, and S1–S4 were stat. sig  
(t < 0.001) and S1–S3 – not stat. sig. [22]. Other RS 
parameters did not change significantly with session 
number. 
The full table has 11 attributes and 32 objects (meas-
urements). In each row of the decision table there are 
the following condition attributes: P# – patient#, age – 
– patient’s age, sex – patient’s sex: 0 – female, 1 – 
male, t_dur – duration of the disease, S# – Session#, 
UPDRS – total UPDRS, HYsc – Hoehn and Yahr scale 
all measured by the neurologist and saccades measure-
ments: SccDur – saccade duration; SccLat – saccade

 
 
 
 
 

 

 

 

Fig. 11. Parallel changes in UPDRS and reflexive saccades latencies as effects of medication and STN 
stimulation. Changes between control and Med*StimOn were significantly different for UPDRS p < 0.001 (**), 
RS p < 0.01 (*). 
Ryc. 11. Równoległe zmiany w UPDRS i opóźnienia w odruchowych sakadach jako skutek działania leków 
i  stymulacji STN. Różnice między kontrolą i Med*Stimon były znaczące dla UPDRS (p < 0,001), RS **  
p < 0,01 (*). 

 

Table IV. Extract from information table 
Tabela IV. Część tabeli informacyjnej 

 
P# age sex t_dur S# UPDRS HYsc SccDur SccLat SccAmp SccVel 

28 54 1 8 1 58 2.0 43 402 12 566.9 

28 54 1 8 2 40 1.0 46 297 11 474.5 

28 54 1 8 2 40 1.0 49 227 10 431.2 

28 54 1 8 4 16 1.0 47 198 9 376.2 

38 56 0 11 1 49 2.5 42 285 14 675.2 

38 56 0 11 2 22 1.5 48 217 12 509.7 

38 56 0 11 3 37 2.5 43 380 14 638.9 

38 56 0 11 4 12 1.5 45 187 10 482.6 
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latency; SccAmp – saccade amplitude, and SccVel –  
– saccade velocity. In the next step, we performed re-
duction of the attributes (see reduct in the Method sec-
tion) to minimumize the number of attributes describing 
our results. In the following step, we performed table 
discretization which means that single values of meas-
urements were replaced by their range (as describe 
in the Method section: cut sets). As a result we have 
obtained a decision table (Tab. V – see below). 
In the first column is the patient’s number, in the sec-
ond: patient’s age divided into patients below (Pat#28) 
or above (Pat#38) 55 years of age; disease duration 
and Hohn and Yahr scale were not important (stars), 
session number is the same; and other saccades pa-
rameters were also divided into ranges. It is interesting 
how the UPDRS values were divided into different 
ranges: above 55, 22.5 to 55, 14 to 22.5, and below 14 
(the last column). On the basis of the decision table 
we can write the following rule: 

('Pat' = 28)&('age' = "(-Inf,55.0)”)&('Sess' = 1)& 
('SccDur' = ”(-Inf,45.5)")&('SccLat' = ”(260.0,Inf)") 
&(' SccAmp') = "(10.5,Inf)") = >  
('UPDRS' = "(55.0,Inf)" )                                        (11) 

We read this as the formulas above (eqs. 1–10), and 
each row of the table (tab. V) can be written in the 
form of this equation (eq. 11). These equations 

are parts of the data mining system based on the 
Rough Set Theory [5]. On this basis we have found 
more general rules describing our measurements in 
a similar way as mentioned above (eqs. 6–9). In the 
next step, we tested our rule using the machine-
learning concept. We randomly divided our data into 4 
groups, we took 3 groups as a training set and the 
fourth was tested. By changing groups belonging 
to the training and test sets, we removed the effect 
of accidental division. The results of each test were 
averaged. It is called the 4-fold cross-validation that 
gave us the results in the confusion matrix (tab. VI). 
As a machine-learning algorithm we used the decom-
position tree (see Methods). 
We have performed several tests trying to predict 
UPDRS values on the basis of measuring saccades 
properties. As the changes in UPDRS and saccades 
latencies were similar when the session number 
changed (Fig. 11), we tried to predict individual  
UPDRS values only from the RS latencies, but we did 
not get good results. Nevertheless, when, the patient ́s 
age, RS: latency, amplitude, and duration were added 
to the session number, the global accuracy in UPRDS 
prediction was 70% (ML: decomposition tree, cross-
validation-method). This is a good result for such 
a small population showing the power of data mining 
and machine learning methods in neurology. 

 
Table V. Extract from decision discretized-table 
Tabela V. Część zdyskretyzowanej tabeli decyzyjnej  

 
P# age t_dur S# HYsc SccDur SccLat SccAmp UPDRS 

28 "(-Inf,55.0)" * 1 * "(-Inf,45.5)" "(260.0,Inf)" "(10.5,Inf)" "(55.0 Inf)" 

28 " (-Inf,55.0)" * 2 * "(45.5,Inf)" "(260.0,Inf)" "(10.5,Inf)" "(22.5,55.0)" 

28 "(-Inf,55.0)" * 2 * "(45.5,Inf)" "(-Inf,260.0)" "(-Inf,10.5)" "(22.5,55.0)" 

28 "(-Inf,55.0)" * 4 * "(45.5,Inf)" "(-Inf,260.0)" "(-Inf,10.5)" "(14.0,22.5)" 

38 "(55.0,Inf)" * 1 * "(-Inf,45.5)" "(260.0,Inf)" "(10.5,Inf)" "(22.5,55.0)" 

38 "(55.0,Inf)" * 2 * "(45.5,Inf)" "(-Inf,260.0)" "(10.5,Inf)" "(14.0,22.5)" 

38 "(55.0,Inf)" * 3 * "(-Inf,45.5)" "(260.0,Inf)" "(10.5,Inf)" "(22.5,55.0)" 

38 "(55.0,Inf)" * 4 * "(-Inf,45.5)" "(-Inf,260.0)" "(-Inf,10.5)" "(-Inf,14.0)" 
 

Table VI. Confusion matrix for different session numbers (S1–S4) 
Tabela VI. Macierz błędów dla różnych sesji S1–S4 

Predicted 

Actual 

 

 55.0,Inf 22.5,55.0 -Inf,14.0 14.0,22.51 ACC 

55.0,Inf 0.6 0.3 0.2 0.0 0.33 

22.5,55.0 0.1 1.3 0.0 0.0 0.8 

-Inf,14.0 0.0 0.1 0.2 0.0 0.2 

14.0,22.5 0.0 0.2 0.0 0.0 0.0 

TPR 0.45 0.6 0.2 0.0  
 

TPR: True positive rates for the decision classes, ACC: Accuracy for the decision classes, the global coverage was 1.0, the 
global accuracy was 0.7, the coverage for the decision classes: 0.7, 0.9, 0.3, 0.2. 
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DISCUSSION  

We have given several examples related to compari-
son of the classical measures performed by most neu-
rologists and our new approach. The main difference 
between these measures is their precision and objec-
tivity. Our approach is doctor-independent and can be 
performed automatically. In the near future it may lead 
to replacing hospital-oriented with home-oriented 
medicine. It will give new options to patients such as 
to measure their symptoms at home and to send their 
results to the hospital for consultation with a neurolo-
gist. Such methods will be faster, more precise and 
can help to obtain more frequent measurements. 
In consequence, they may help not only to determine 
patients' symptoms more objectively, but also to fol-
low disease progression in short periods of time that it 
is not possible nowadays with the limited means and 
time of neurologists. If we obtain such information, 
it may lead to slowing down of disease progression. 
Slowing down disease progression remains the single 
most important unrealized need in PD treatment. Even 
with a large number of clinical trials, we are still una-
ble to produce conclusive results. There are multiple 
reasons for such failures. First of all, there are the 
shortcomings of current disease models in target vali-
dation and potentials tests, difficulties in choosing 

clinical endpoints, as well as finding sensitive bi-
omarkers in disease progression. One problem is that 
the disease starts long before the observed motor 
symptoms and individual pathological mechanisms 
have a large spectrum. One of the purposes of this 
work is to try to extract knowledge from symptoms 
in order to model possible mechanisms of disease 
progression as exemplified in Fig. 1. 

CONCLUSIONS  

Data mining and ML approaches are more precise and 
powerful than popular statistical methods. On the 
basis of finding modus ponens rules in experimental 
sets, we can apply them to predict disease progression 
not only in a particular patient, but also in new pa-
tients in order find possible ways to slow down the 
development of their symptoms. 
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