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AB STR ACT  

One of the branches of traditional Chinese medicine (TCM) is herbal medicine. In this paper, we focus on the biological 

activity of substances belonging to flavonoids and specific examples of their impact on various body systems. Flavonoids 

are a group of chemical compounds included in plant materials, honey, propolis or mushrooms used in TCM. Chrysin, 

galangin, kaempferol and fisetin are examples of flavonoids showing, among others, antioxidant, anti-inflammatory or 

antibacterial properties, which are the subject of various scientific studies aimed at examining their potential therapeutic 

effect. 
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STR E SZCZ ENI E  

Ziołolecznictwo stanowi jedną z głównych gałęzi tradycyjnej medycyny chińskiej (traditional Chinese medicine – 

TCM). W pracy skupiono się na aktywności biologicznej wybranych flawonoidów, a także konkretnych przykładach 

wpływu tych substancji na różne układy organizmu. Flawonoidy to grupa związków chemicznych zawartych w surow-

cach roślinnych, miodzie, propolisie czy grzybach stosowanych w TCM. Chryzyna, galangina, kemferol i fisetyna to 

przykłady flawonoidów wykazujących m.in. właściwości przeciwutleniające, przeciwzapalne czy przeciwbakteryjne. 

Właściwości te są przedmiotem wielu badań naukowych, mających na celu zbadanie ich potencjalnego działania tera-

peutycznego. 

SŁOW A KL UCZOWE  

flawonoidy, chryzyna, galangina, kemferol, fisetyna, tradycyjna medycyna chińska 

Introduction to traditional Chinese medicine and 

flavonoids 

Traditional Chinese medicine (TCM) is a thousand 

years old healthcare system that heavily depends on 

herbal medicine and dietetics [1]. In addition, 

nonmedication practices such as bodywork and general 

physical activity are important aspects of therapy in 

TCM. The main principal regarding medicines used in 

TCM is strong presence of synergistic effects of many 

active substances within one plant or common, targeted 

effects of many plants. This methodology has led TCM 

to develop methods for the preparation of plant 

infusions, decoctions, herbal mixtures in form of 

capsules, pills and tablets, as well as, whole plant parts, 

which contain a significant number of substances with 

proven medicinal and supporting properties. The 

unique combination of substances as well as the wide 

application of traditional Chinese medicines is the 

reason why more and more scientists are looking for 

clues and grounds for developing new drugs in them, as 

well as clues to discover previously unknown 

indications of substances known to evidence-based 

medicine (EBM) [1,2,3]. Flavonoids are a frequently 

occurring group of compounds with a vast, proven 

therapeutic effects. 

Flavonoids can be extracted from plant samples using 

organic solvents but specific extraction parameters are 

varied among flavonoid family (Table I).

Table I. Proposed parameters of extraction of chrysin, galangin, kaempferol and fisetin 

Flavonoid Sample 
Solvent:  

(solvent: sample ratio) 
Temperature [C] Time [h] Reference 

Chrysin Alpinia oxyphylla 70% ethanol (20:1) 60 0.5 [4] 

Galangin Galangal 90% ethanol (25 ml:1 g) 80 3 [5] 

Kaempferol Strobilanthes crispus leaves 
Supercritical CO2, 10% ethanol solution as cosolvent, 

20 MPa pressure 
50 1 [6] 

Fisetin Strawberries 
Methanol/water 80/20 v/v with renewals of solvent every 

24 hours. After that a liquid-liquid extraction with 
chloroform used as solvent system 

20 72 [7] 

Flavonoids are polyphenolic secondary metabolites 

which are commonly found in most plants. Compounds 

can occur as glycoside or aglycone form. Glycoside 

derivatives of flavonoids are the most common form 

that can be found in plants. The skeleton of flavonoid 

contains 15 carbon atoms that are divided into two, six-

-membered phenyl rings. The rings are linked together 

by three-carbon unit with an oxygen atom as a fourth, 

which can then cyclize, forming a third ring (Figure 1) 

[8,9,10,11].
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Fig. 1. Chemical structure of flavonoids (a); chrysin (b); galangin (c); kaempferol (d); and fisetin (e). 

 

However, this large group of compounds can be 

divided into subgroups based on their chemical 

structure. Flavones like chrysin or apigenin lack 

hydroxyl group at the C3 position contrary to flavanols 

where this group is present i.e. in kaempferol and 

galangin. Flavanones do not have double bond between 

C2 and C3. Hesperitin and naringenin are examples of 

flavanones. Isoflavonoids, such as genistein, are 

characterized by connection of prime ring in C3 rather 

than usual C2. Last group that shares the common basic 

skeleton are anthocyanins, like cyanidin or malvidin 

with a double bond between oxygen atom in O1 

position and C2 [12]. 

Flavonoids exhibit wide spectrum of biological 

activity, like anti-inflammatory, neuroprotective, 

hepatoprotective, antibacterial, anti-mutagenic, 

anticancer, cardiovascular protective, antifungal, 

antiviral, and anti-allergic properties [8,13,14,15,16]. 

Potential mechanisms of anti-inflammatory activity of 

flavonoids are represented on Figure 2. 

Due to the different structure of flavonoids, their 

biological activities are varied. The anti-inflammatory 

effect is directly related to the double bond between C2 

and C3 atoms. Moreover, double bond between C4 and 

oxygen atom was determined to play a crucial role in 

anti-inflammatory effect of flavonoids. Number and 

position of hydroxyl group in molecule also play an 

important role in modulating inflammatory responses 

[17,18]. 

 
Fig. 2. Anti-inflammatory activity of flavonoids (based on [17,18]). COX-2 
– cyclooxygenase-2; LOX – lipoxygenase; NF-κB – nuclear factor κ B; 

iNOS – inducible nitric oxide synthase; TNF-α – tumor necrosis factor α; 

IFN-γ – interferon γ; IL – interleukin.  



A. Sokal et al.: FLAVONOIDS IN TRADITIONAL CHINESE MEDICINE 

52 

One of the most important activities of flavonoids is 

their antioxidant properties. The large number of 

unsaturated bonds in their structure are able to reduce 

the reactive oxygen species (ROS). Second important 

aspect is the number and position of hydroxyl group in 

phenyl ring. Another mechanism may be direct 

inhibition of ROS formation by chelating reaction with 

trace elements, inhibition of ROS generating enzymes 

such as microsomal monooxygenase. It is also worth 

mentioning that chelating potential of flavonoids is 

related to the number and position of the hydroxyl 

group within the molecule. Presence of hydroxyl group 

in position 3 contributes to high chelating capacity and 

oxidative reduction. Hydroxyl group connected to the 

prime ring has less impact on the chelating ability with 

the postulated temperature-dependent mechanism of 

action. The last postulated mechanism is activation of 

antioxidant defenses by flavonoids molecules 

[8,18,19]. 

The aim of this study is to present the potential medical 

applications and therapeutical effects of flavonoids 

often used in TCM – chrysin, galangin, kaempferol  

and fisetin. We focused on neuroprotective, 

hepatoprotective and antibacterial properties of 

selected flavonoids. 

Chrysin 

Chrysin (5,7-Dihydroxyflavone; Figure 1b) belongs to 

the polyphenolic phytochemicals. It is present in many 

plants such as Passiflora caerulea, Passiflora 

incarnata, Oroxylum indicum, Cytisus multiflorus, 

Crataegus oxyacantha, Pelargonium crispum, 

Scutellaria immaculata or Alpinia oxyphylla, moreover 

it can be also found in honey, propolis and some species 

of fungi like Lactarius deliciosus [20,21,22,23]. 

Studies, both in vitro and in vivo, have shown that 

chrysin has a protective effect on the cardiovascular 

system as well as hepatoprotective, anticancer and 

neuroprotective actions [24,25,26]. 

Additionally, some studies postulate antiviral activity 

of chrysin against hepatitis B virus (HBV) or 

enterovirus 71 (EV71) [21,27,28]. 

Neuroprotective activity 

Neuroprotective effect of chrysin is related to its 

antioxidative effect on dopaminergic neurons, which 

increase synthesis of neurotrophic factors e.g. brain- 

-derived neurotrophic factor (BDNF). Antiapoptotic 

and anti-inflammatory effects as well as neural 

regeneration were observed [26,29,30,31]. The 

research results show that chrysin could be used in the 

treatment of movement associated diseases or cognitive 

disorders, such as Parkinson’s disease (PD), 

Alzheimer’s disease (AD), multiple sclerosis, or brain 

damage associated with head injuries or ischemic 

strokes. The anticonvulsant properties of chrysin have 

been demonstrated, which makes it possible to consider 

its use in the treatment of epilepsy [32,33,34,35,36]. 

The study conducted on a rat model reports that the 

neuroprotective effect of chrysin may be used in the 

neurodegenerative processes caused by lead (Pb) 

poisoning. Long-term treatment with chrysin 

(experiment lasted 8 weeks) alleviated problems with 

memory and learning ability, probably by improving 

the functioning of the neural mechanism underlying 

these processes, i.e., long-term potentiation (LTP), 

which is impaired due to Pb poisoning by inhibiting 

LTP induction, additionally, chrysin suppresses 

inflammatory processes and lowers the concentration 

of Pb, which can prevent the loss of neurons [37]. 

Cardioprotective activity 

The literature describes the effect of chrysin on the 

circulatory system, which may reduce the likelihood of 

developing or alleviate the course of diseases such as 

atherosclerosis, hypertension, myocardial damage as  

a result of a heart attack, or thrombosis [38,39,40].  

In addition, it has a protective effect against 

inflammatory processes within the endothelium of 

blood vessels, which can play an important role in 

preventing the development of such diseases as 

atherosclerosis and thromboangitis obliterans [41]. For 

this reason, chrysin could be used in the prevention of 

hypertension, and thus also preventing the development 

of diseases associated with it. The hypotensive effect of 

chrysin is related to its influence on many processes 

related to, like the regulation of blood vessel tone. 

Studies on the influence of chrysin on the relaxation  

of coronary arteries show that this compound affects 

many mechanisms related to the vasorelaxation.  

It inhibits indirectly calcium-activated chloride 

channels (CaCCs) in smooth muscle cells of the 

coronary arteries (ASMC), preventing coronary artery 

spasms, and also lowers blood pressure in L-NAME- 

-induced hypertension by modulating oxidative stress 

in the aorta, heart and blood. This activity could be used 

in the treatment of diseases with an etiology associated 

with vasomotor dysfunctions, such as hypertension  

or stroke. In addition, chrysin in mitoxantrone 

cardiotoxicity studies in a mouse model reduced 

cardiomyocyte apoptosis and loss of intermediate 

filaments, which may indicate its anti-apoptotic 

properties and their importance in cardioprotective 

action [24,42,43]. 

Osteoprotective activity 

Previous studies indicate that the use of a diet enriched 

in chrysin can positively affect bone formation and 

improve bone reconstruction processes through 

antioxidant, anti-inflammatory and phytoestrogenic 

effects. In patients with rheumatoid arthritis (RA), 

chrysin reduces the concentration of oxidative stress 
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mediators, alleviating inflammation, and has an 

antioxidant effect on chondrocytes, protecting against 

cartilage degradation. In addition, it has an 

osteoprotective effect, regulating bone remodeling 

processes by reducing bone resorption, increasing the 

activity of osteoblasts and reducing the activity of 

osteoclasts. As a result of the described actions, chrysin 

may reduce the likelihood of developing chronic 

diseases within the bone tissue, such as osteoporosis 

[44,45]. 

Galangin 

Galangin (3,5,7-Trihydroxyflavone; Figure 1c) is  

a flavanol that can be found in many members of the 

Zingiberaceae family. Alpinia officinarum, identified 

as a natural raw material characterized by one of the 

highest galangin contents (observed in relation to plant 

materials), has been used in case of emesis, abdominal 

pain and diarrhea treatment. Helichrysum aureonitens 

as well as propolis have been also recognized as  

a potent source of this compound [46,47,48]. Galangin 

was also identified as an active compound in 

Ershiwuwei Lvxue Pill, traditional Tibetan medicine 

that was officially recorded in the Drug Standard of the 

Ministry of Public Health of the Peoples Republic of 

China for the treatment of RA [49]. As other 

flavonoids, galangin exhibits antioxidant and anti- 

-inflammation activities, but other potential medical 

applications have also been explored. 

Anticancer activity 

Anticancer activity is one of the most often mentioned 

effects of galangin. It has been tested against numerous 

types of human cancers’ cell lines. Hepatocellular 

carcinoma (HCC) due to its high morbidity and 

mortality is the subject of extensive research, with aim 

to find safe and effective pharmacotherapy. Latest 

research suggests that galangin may be considered as  

a potential antitumor agent against HCC. Postulated 

mechanisms of action are inducing cell apoptosis by 

elevating expression of TP-53 and p53 related genes. 

Moreover, treatment with galangin inhibits cell 

migration and invasion of HCC cells, which can be 

potentially used in cancer therapy as a result of its 

multidirectional mechanism of action. Furthermore, in 

mouse model galangin significantly reduces tumor 

growth by down-regulating H19 expression which 

strongly corelates with increased cell apoptosis and 

decreased invasion [50]. Another promising therapeutic 

effect was observed by Atwa et al. [51] during their 

research regarding galangin effect on HCC in mice 

model. It was postulated that galangin may also be 

considered as a synergistic agent in HCC 

chemotherapy. Galangin, together with luteolin, 

strongly ameliorates doxorubicin therapy in chemically 

induced HCC rat model, in contrast to only doxorubicin 

therapy which led to minimal improvement in liver 

function. This effect may be used to development a new 

type of chemotherapy with reduced side effects and the 

highest safety. Anticancer effect against HCC was also 

investigated by Fang et al. [52]. Cell cycle arrest at the 

G0/G1 phase, ROS and endoplasmic reticulum (ER) 

stress induced apoptosis, induction of autophagy are 

modes of action that have not been mentioned in 

previous research. 

Galangin effect on other cancers was also tested. 

Glioblastoma multiforme (GBM), a malignancy of 

central nervous system which recurrence cannot be 

avoided even after successful pharmacotherapy, 

radiotherapy or surgical intervention. That is a reason 

why new drugs are needed to either effectively 

eradicate cancer cell or successfully inhibit their 

growth, without severe side effects for the patients. 

Proposed mechanism of galanin’s antitumor action is 

the inhibition of the epithelial-to-mesenchymal 

transition (EMT), a process that has been proven to 

promote the cell growth, migration and facilitation 

which are directly linked to malignant tumor. Galangin 

achieves this by directly binding to oncogene – Skp2 

promoting its degradation via the ubiquitin pathway 

and consequently inhibiting EMT and cell growth both 

in vivo and in vitro [53]. 

Rampogu et al. [54] in their review about 

chemotherapeutic potential of galangin summarized its 

effect on various cancer types. It was concluded that 

galangin may inhibit breast cancer, ovarian cancer, 

cervical cancer, laryngeal carcinoma, colon cancer, 

renal carcinoma, lung cancer and oesophageal 

carcinoma through various mechanisms. Modulation of 

apoptotic pathways such as caspases and p53, 

inhibition of glyoxalase-1 and elevation of oxidative 

and carboxyl stress, modulation of PI3K/AKT/NF-κB, 

BCL-2, cFLIP, Mcl-1, and mTOR pathways. 

This summary provides background information for 

further research regarding anticancer activity of 

galangin. Complex and multitarget mechanisms of 

action provide unique possibilities for creating new 

type of pharmacotherapy that is based on galangin, 

which may be effective, lacking severe side effects, 

compatible with today used therapies and safe. 

Antidiabetic activity  

Diabetes mellitus (DM) is one of the most frequently 

diagnosed chronic disease with severe consequences 

such as diabetic nephropathy. Untreated it may lead to 

chronic kidney disease and contribute to major excess 

mortality among diabetic patients. Galangin has been 

postulated to exert positive effects on diabetic 

nephropathy, as well as other effects of DM in mouse 

and rat models through various mechanisms. 

Improvement in kidney function and prevention of 

kidney damage were observed in diabetic rats treated 

with galangin for 8 weeks in comparison to untreated 
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diabetic rats, as confirmed by histopathology. 

Postulated mechanisms are presented on Figure 3 

[55,56]. 

Effects presented on Figure 3 does not affect the health 

of non-diabetic rats’ model [55,56]. In vitro models 

have also shown that galangin has a potential to inhibit 

renin-angiotensin system activation and 

PI3K/AKT/mTOR signal pathway which is directly 

related to increased ROS production, decreased cell 

viability and proapoptotic activity [56]. 

 

 
Fig. 3. Mechanisms of nephroprotective activity of galangin in mouse and rat model. SOD – superoxide dismutase; CAT – catalase; GSH – reduced gluta-
thione; ROS – reactive oxygen species; NF-κB – nuclear factor κ B; TNF-α – tumor necrosis factor α; IL – interleukin. 

 

Other potential use of galangin in diabetes mellitus is 

the direct regulation of glucosee homeostasis. 

Mechanisms for controlling glucose metabolism are 

linked to dipeptidyl peptidase-4 (DPP-4) inhibition, 

improvement of insulin activity by activating insulin 

receptor gene, attenuation of insulin resistance via the 

Akt/mTOR signaling pathway. Additionally, it can 

improve glucose tolerance by stimulating insulin 

secretion and increasing insulin sensitivity. This effect 

elevates glucose uptake in peripheral tissues, muscles, 

and adipose tissue [55,57,58]. Aloud et al. [59] 

proposed different mechanisms in their papers. In rat 

model galangin improved glucose homeostasis by 

modulating the activity of enzymes such as 

glucokinase, G6PD and G6P. A study conducted by 

Aloud et al. suggested how galangin potentially 

operates as an anti-diabetic agent. This investigation 

was carried out on a rat model with disrupted glucose 

homeostasis induced by streptozotocin. The findings 

indicated that galangin might counteract the elevated 

function of enzymes involved in gluconeogenesis and 

glycolysis. Despite these findings, the precise workings 

of this mechanism were not entirely elucidated, 

emphasizing the need for further research to 

comprehensively grasp the anti-hyperglycemic effects 

of galangin. 

Kaempferol 

Kaempferol (3,4’,5,7-Tetrahydroxyflavone; Figure 1d) 

is a flavonoid that can be commonly found in many 

medicinal plants, like Carthamus tinctorius, 

Glycyrrhiza glabra, Anemarrhena spp., Punica 

granatum, Equisetum spp., Sophora japonica, Ginkgo 

biloba, Euphorbia pekinensis. Moreover, it occurs in 

beans, broccoli, cabbage, gooseberries, grapes, kale, 

strawberries, tomatoes, citrus fruits, brussels sprouts, 

apples and grapefruit [60,61,62,63,64]. Kaempferol is 

an active component in many plants that are being used 

in TCM mixtures (Table II).
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Table II. Examples of traditional Chinese medicine drugs containing kaempferol as an active substance 

Name (acronym) Intendent use Reference 

Taohong Siwu Decoction (TSHWD) Various blood stasis, blood deficiency syndromes [60] 

Suanzaoren decoction (SZRD) 
Providing nourishment to the bloodstream, soothing the thoughts, alleviating heat, 

and eliminating irritation 
[61] 

Huangqi Sijunzi Decoction (HQSJZD) 
Replenish blood, enhance bodily resistance, and address deficiencies, it 

possesses effects that promote overall wellbeing 
[65] 

Wumeiwan (WMW) Treatment of inflammation in respiratory tract [66] 

Gegen Qinlian decoction (GGQLD) As an antipyretic and antidiarrheal medicine, eliminate dampness and heat [67] 

Huanglian Jiedu Decoction (HLJDD) Treatment of type 2 diabetes mellitus [68] 

LiuWei DiHuang Pill (LWDH Pill) Treatment of type 2 diabetes mellitus [69] 

Fuzheng–Jiedu Decoction (FJD) Improving resistance against “deficiency, dampness, stasis, and toxin” [70] 

Huoxin pill (HXP) Treatment of cardiovascular diseases [71] 

Simiao pill (SM) 
Treat gout through eliminating dampness retention and strengthening the liver 

and kidney 
[72,73] 

Ling Gui Zhu Gan formula (LGZG) Treatment of spleen deficiency and dampness syndrome [74] 

 

Neuroprotective activity 

The neuroprotective properties of kaempferol are 

mainly related to its antioxidant and anti-inflammatory 

effects. Kaempferol may inhibit inflammation in neural 

system due to reduction of microglial activation. 

Mechanism of action was found to be related to 

downregulation of p38, MAPK, JNK, and ERK which 

are inflammatory response mediators. Moreover, 

kaempferol inhibits the NF-κB and TLR4, which 

further reduce the proinflammatory mediators’ 

secretion [75,76,77,78]. Antioxidant activity in the 

central neural system may result from inhibition of 

ROS formation, scavenging of free radicals, 

endogenous antioxidants (superoxide dismutase and 

glutathione) modulation, inhibition of β-amyloid 

protein aggregation and BDNF modulation 

[76,79,80,81]. The regulation of apoptosis is also 

postulated as a kaempferol’s neuroprotective effect. 

Zhang et al. [82] proposed regulation of BDNF-TrkB- 

-PI3K/AKT signaling pathway for antiapoptotic effect. 

Down regulation of p-NF-κB and p-GSK-3β together 

with up regulation of p-Akt and Nrf-2 was also 

proposed as a potential mechanism of KE protection 

against cerebral oxidative stress, inflammation and 

apoptosis [77,78,81]. 

Another neuroprotective mechanism of kaempferol 

was proposed by Inden et al. [83]. Misfolding and 

aggregation of α-synuclein protein are directly linked 

to PD, PD with dementia, dementia with Lewy bodies 

(DLB) and multiple system atrophy (MSA). For now, 

there are no disease-modifying therapies regarding an 

α-synuclein aggregation [84]. Kaempferol due to 

ameliorating of lysosomal function and autophagy 

activation may exhibit a protective effect against  

α-synuclein protein, and in result ameliorates 

pharmacological therapy. 

 

Antibacterial activity 

Antibacterial activities of kaempferol against  

A. baumannii, Bacillus spp., K. pneumoniae, 

Mycobacterial spp., Staphylococcus spp., Enterococci, 

Vibrio cholera were investigated by Periferakis et al. 

[85]. The main mechanisms of action are proposed to 

be the cell membrane disruption, activation of 

apoptosis, fragmentation of DNA in bacteria cells 

[85,86].  

Drug resistance plays a pivotal role in treatment of 

bacterial infection. Presence of multidrug resistant 

bacteria species that are able to infect humans, animals 

and plants is one of the biggest problems of future 

medicine. It is crucial to find new types of drugs, that 

can improve present antibacterial therapy and provide 

a base for future research. Zhou et al. [87] analyzed  

and described potential synergistic effect of kaempferol 

and colistin, medicine used as a last chance during 

therapy of multidrug-resistant Gram-negative bacteria 

(MDR-GNB). The synergistic effect of kaempferol  

was also observed with penicillin against methicilin- 

-resisitant Staphylococcus aureus (MRSA) by He et al. 

[88]. Synergistic therapy increased penicillin 

sensitivity of MRSA as well as antibiofilm activity. 

Proposed mechanisms of action are inhibition of 

penicillinase expression and involvement in biofilm 

development on initial and mature stage, respectively. 

These studies can be a basis for the search of new types 

of drugs that will be effective against current drug-

resistant bacteria [88]. 

Hepatoprotective activity  

Hepatic illness such as viral hepatitis, liver cirrhosis, 

hepatocellular carcinoma, hepatic cancer, and also 

metabolic illnesses together with unhealthy lifestyle  
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like excessive alcohol consumption, obesity and  

untreated diabetes can lead to severe liver inflammation  

and liver injury, that require medical intervention and 

pharmacological treatment. Unfortunately, these drugs 

exhibit many side effects and sometimes are not safe to 

use. This prompts researchers to look for safer drugs 

that can be effectively used as a hepatoprotective agent 

[89]. Kaempferol is a promising chemical that can be 

safely used as a hepatoprotective agent [89,90,91, 

92,93]. Anti-inflammatory effect in hepatic cells is  

a result of inhibition of PI3LK/pAkt, Nrf2 pathways, 

pro-inflammatory cytokines (IL-6, TNF-α, IL-β1) 

generation. Inhibition of hepatic enzyme activity (ALT, 

AST) during active toxication and maintaining their 

level during liver injury as well as modifying activity 

of antioxidant enzymes (SOD, CAT, GSH) are 

responsible for maintaining homeostasis in stressful 

conditions. Antiapoptotic activity of kaempferol is 

related to inhibition of NF-κB/p65, downregulation of 

COX-2, iNOS protein production, suppression of 

upstream kinases (ERK, JNK, p38, MAPKs) and 

activation and upregulation of SIRT1. These effects 

may increase cell survivability and proliferation and 

reduce inflammation and oxidative stress and result in 

hepatoprotective effect [94,95,96]. 

Fisetin 

Fisetin (3,3’,4’,7-Tetrahydroxyflavone; Figure 1e) is  

a flavonoid that is present in many commonly used 

fruits and vegetables. Significant amount of it have 

been found in strawberries, grapes, onions and 

cucumbers [97]. This flavonoid was also identified as 

an active compound in many TCMs such as Gan 

Shuang granulates, Xintong granulates, Acacia catechu 

– Scutellariae Radix formula, Gualou and Niubang 

Decoction. These medicines are used in various health 

problems e.g. treatment of chronic liver diseases, 

pulmonary infection therapy, coronary artery disease 

treatment and more [98,99,100,101]. 

Fisetin has so far been poorly studied, however 

multiple therapeutic effects were postulated. In 

literature, anticancer [102,103], anti-inflammatory 

[104,105], hypoglycemic [106] activities have been 

described. In our review, we focused on 

senotherapeutic and neuroprotective activity of fisetin. 

Senotherapeutic effect 

Cellular senescence is an irreversible replicative arrest 

of a cell that is characterized by increased survivability 

and often up regulated metabolism. This state is an 

effect of both intra and extracellular signals that are 

related to cellular and tissue damage and more 

importantly, to cancer development. In this state DNA 

damage, oncogene activation, telomeres dysfunction, 

protein misfolding and aggregation together with failed 

protein removal and other undesirable processes take 

place with high intensity. Senescence main function is 

a tumor suppressing but, it was also proved to play  

a causal role in aging and age-related diseases. That is 

why counteracting this phenomenon is crucial for 

improving health and extending life [107,108,109].  

The last mentioned finding may be confirmed by the 

results of Yousefzadeh et al. [108] in vivo and in vitro 

examinations revealing fisetin to reduce the fraction of 

senescent T and NK, playing an important role in 

maintaining tissue homeostasis as well as for the 

alleviation the symptoms of age-related disorders. 

Anti-inflammatory and antioxidant properties of fisetin 

have also been postulated as a potential mechanism of 

its action. Verdoorn et al. [110] postulated that 

proinflammatory, proapoptotic agents such as TNF-α, 

IL‐1α, IL‐6 expression is up regulated in senescent 

cells. This may affect neighbor cells and spread 

senescence which can lead to chronic inflammation, 

frailty, mortality and comorbidities. Senolytic activity 

of fisetin inhibits this effect and as a result reduces 

systematic inflammation and increases resilience and 

health span. Fisetin was also proved to inhibit bone 

cellular aging in mouse model. Proposed mechanism is 

modulating signaling pathways: SIRT1, BCL-2/BCL-XL, 

AKT. This leads to clearance of senescent cells and in 

conclusion, reduction of ROS generation and inhibiting 

senescence associated secretory phenotype 

inflammation [111]. In rat model of senescence induced 

by D-galactose and in naturally aged rat erythrocytes 

fisetin significantly increases antioxidant levels by 

down regulating age induced ROS generation, lipid and 

protein peroxidation and activation of plasma 

membrane redox system [112]. Russo et al. [113] in 

their research postulated that fisetin may also target 

MEK/ERK/IL-8 pathway which is linked to cell 

resistance to apoptosis and inflammatory status and 

AMPK/ULK1 pathway what modify cell susceptibility 

to autophagy and senescence. 

Neuroprotective activity 

Neurodegenerative disease leads directly to loss of 

brain function as a result of permanent loss of neurons. 

AD, PD and many others diseases are characterized by 

exposition of neurons to oxidative stress in their 

pathogenesis. Fisetin as a flavonoid can act as an 

antioxidant agent and may be used as a protective 

compound. This effect directly influences many 

cellular mechanisms. Fisetin inhibits lipid 

peroxidation, downregulates MAPK – p38 – NF-κB 

signaling pathway, reduces oxidative stress by ROS 

scavenging, ameliorate antioxidant enzymes’ activity, 

modulates reduced glutathione concentration and 

modifies PI3K/Akt/Nrf-2 pathway. All this effects 

ultimately contribute to reduction of damaged neurons 

[114]. Fisetin senotherapeutic effect can also be the 

reason of its neuroprotective activity. Accumulation of 

senescent cells during life-time may be directly 
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connected to age-related, neurodegenerative diseases. 

Senescent cells may influence the neuronal tissue by 

their metabolic shifts, induced ROS generation and  

pro-inflammatory senescence-associated secretory 

phenotype factors. Elimination of senescent cells 

positively modulates inflammation, which is a frequent 

symptom in neurodegenerative diseases. Nevertheless, 

further clinical trials are needed to determine the safety 

and efficacy of pharmacotherapy using senolitic drugs 

[115]. Maher [116] in its summary proposed, in 

addition to the previously mentioned, modulatory 

effect of protein aggregation and protein stability which 

both can play a significant role in treatment of AD, PD 

and others. Another positive effect on PD has been 

postulated by Rosado-Ramos et al. [97]. Their 

proposed effect of fisetin in PD treatment, is directly 

linked to the main PD pathogenesis mechanism, which 

is excessive expression and deposition of α-synuclein 

protein in the brain. In their research, it was proven that 

fisetin reduces toxicity of α-synuclein by modulating 

the process of intracellular aggregation and 

localization, although the precise molecular 

mechanisms of neuroprotective response still need to 

be fully described [97]. 

Conclusions 

Flavonoids constitute a substantial category of 

naturally-occurring substances present in plants, and 

they have been investigated for their potential 

therapeutic advantages. These substances exhibit  

a diverse array of biological activity and health-related 

attributes, rendering them compelling in numerous 

therapeutic scenarios. Flavonoids have been examined 

for their therapeutic potential in various ways, 

including their capacity to act as antioxidants, mitigate 

inflammation, provide cardiovascular assistance, 

enhance vascular function, promote brain health, 

bolster the immune system, and potentially exhibit anti-

-cancer properties. Consequently, their attributes have 

been and continue to be harnessed in therapeutic 

applications, as illustrated by their utilization in TCM. 

However, it is important to continue research on the 

mechanisms of action of these compounds to better 

understand their complex interactions with the human 

body. Moreover, they play a key role in the search for 

new drugs, especially in the context of the treatment of 

chronic diseases and cancer. It is worth pursuing further 

research aimed at exploiting the therapeutic potential of 

these flavonoids and developing new treatment 

strategies based on their biological properties. An 

important aspect that should be thoroughly investigated 

are the interactions between flavonoids used in TCM 

and drugs used in EBM. This will increase the safety of 

pharmacotherapy and significantly improve the 

effectiveness of treatment. Another issue, the 

description of which will significantly improve the 

safety of using mixtures of TCM origin, are their side 

effects, which are currently still a blank spot in the 

world of medicine and pharmacotherapy. 

A lot of research needs to be carried out, but thanks to 

the knowledge contained in TCM, we can learn a lot 

about phytotherapy and the actions of flavonoids, 

which may one day form the basis of new drugs and 

therapies. 
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