



Open Access Article

Ann. Acad. Med. Siles. (online) 2026; 80: 42–50  
eISSN 1734-025X  
DOI: 10.18794/aams/216086  
www.annales.sum.edu.pl

PRACA POGLĄDOWA  
REVIEW

## BPC-157 and the gut–brain axis: emerging links between cytoprotection and neuroregeneration

BPC-157 i oś jelitowo-mózgowa:  
nowe powiązania między cytoprotekcją a neuroregeneracją

Barbara Pietrzyk , Maciej Waluga

Department of Medical Biophysics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland

### ABSTRACT

**INTRODUCTION:** The body protection compound-157 (BPC-157) peptide modulates the gut–brain axis (GBA), affecting neural and gastrointestinal functions. Evidence suggests it may promote neuroprotection, regulate inflammation, and influence mood and cognition, with potential clinical relevance for neurodegenerative and psychiatric disorders. This review aimed to comprehensively analyze experimental and clinical data on the biological activity of BPC-157, with a particular focus on its effects on the GBA and its potential therapeutic relevance in neurodegeneration and psychiatric disease.

**MATERIAL AND METHODS:** The review authors independently screened and evaluated studies identified through medical databases, including PubMed, Scopus, and institutional repositories. Data extraction and synthesis were conducted in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to ensure methodological transparency and rigor.

**RESULTS:** The collected evidence indicates that BPC-157 exhibits pronounced cytoprotective, anti-inflammatory, and regenerative properties in preclinical models. It enhances neuronal survival, promotes angiogenesis and synaptic plasticity, and modulates key neurotransmitter systems, including dopaminergic, serotonergic, and GABAergic pathways. In animal models, BPC-157 improves motor coordination, cognitive performance, and recovery after neural injury. Preliminary human studies suggest a favorable safety profile, though clinical efficacy data remain limited.

**CONCLUSIONS:** BPC-157 demonstrates broad protective and regenerative effects with potential relevance to neurological and psychiatric disorders. Its multimodal action on the GBA highlights a promising therapeutic avenue; however, well-designed clinical trials are required to confirm its efficacy, elucidate mechanisms, and establish optimal dosing strategies.

### KEYWORDS

treatment, psychiatric disorders, inflammation, neuroprotection, neurodegeneration, gut–brain axis, BPC-157

Received: 12.11.2025

Revised: 10.12.2025

Accepted: 24.12.2025

Published online: 27.01.2026

**Address for correspondence:** dr n. med. Barbara Pietrzyk, Katedra i Zakład Biofizyki Lekarskiej, Wydział Nauk Medycznych ŚUM, ul. Medyków 18, 40-752 Katowice, tel. +48 32 208 84 24, e-mail: bpietrzyk@sum.edu.pl



This is an open access article made available under the terms of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license, which defines the rules for its use. It is allowed to copy, alter, distribute and present the work for any purpose, even commercially, provided that appropriate credit is given to the author and that the user indicates whether the publication has been modified, and when processing or creating based on the work, you must share your work under the same license as the original. The full terms of this license are available at <https://creativecommons.org/licenses/by-sa/4.0/legalcode>.

**Publisher:** Medical University of Silesia, Katowice, Poland



## STRESZCZENIE

**WSTĘP:** Peptyd BPC-157 (*body protection compound-157*) wykazuje szerokie działanie modulujące w obrębie osi jelitowo-mózgowej (*gut-brain axis – GBA*), wpływając na funkcje układu nerwowego i przewodu pokarmowego. Dane eksperymentalne wskazują, że może on działać neuroprotekcyjnie, regulować odpowiedź zapalną oraz oddziaływać na nastroje i funkcje poznawcze. Zrozumienie jego mechanizmów może mieć znaczenie kliniczne w terapii chorób neurodegeneracyjnych i psychiatrycznych. Celem pracy jest kompleksowa analiza danych eksperymentalnych i klinicznych dotyczących aktywności biologicznej BPC-157, ze szczególnym uwzględnieniem wpływu peptydu na GBA oraz potencjalnego znaczenia terapeutycznego w neurodegeneracji i zaburzeniach psychicznych.

**MATERIAŁ I METODY:** Autorzy przeglądu niezależnie przeszukali i ocenili badania dostępne w medycznych bazach danych takich jak PubMed, Scopus oraz repozytoria instytucjonalne. Proces ekstrakcji i syntezy danych przeprowadzono zgodnie z wytycznymi PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses), zapewniającymi przejrzystość i rzetelność metodologiczną.

**WYNIKI:** Zgromadzone dane wskazują, że BPC-157 wykazuje wyraźne właściwości cytoprotekcyjne, przeciwpazalne i regeneracyjne w modelach przedklinicznych. Zwiększa przeżywalność neuronów, sprzyja angiogenezie i plastyczności synaptycznej, a także moduluje kluczowe układy neuroprzekaźnikowe – dopaminergiczny, serotoninergiczny i GABA-ergiczny. W modelach zwierzęcych BPC-157 poprawia koordynację ruchową, funkcje poznawcze oraz procesy regeneracyjne po uszkodzeniach układu nerwowego. Wstępne badania kliniczne wskazują na korzystny profil bezpieczeństwa, jednak dane dotyczące skuteczności klinicznej pozostają ograniczone.

**WNIOSKI:** BPC-157 wykazuje szerokie działanie ochronne i regeneracyjne o potencjalnym znaczeniu w chorobach neurologicznych i psychiatrycznych. Jego wielokierunkowe oddziaływanie na GBA stanowi obiecujący kierunek badań terapeutycznych, jednak konieczne są dobrze zaprojektowane badania kliniczne w celu potwierdzenia skuteczności, poznania mechanizmów działania i ustalenia optymalnych strategii dawkowania.

## SŁOWA KLUCZOWE

terapia, zaburzenia psychiczne, zapalenie, neuroprotekcja, neurodegeneracja, oś jelitowo-mózgowa, BPC-157

## INTRODUCTION

Body protection compound-157 (BPC-157) is a synthetic 15-amino-acid peptide originally derived from a naturally occurring component of human gastric fluid [1]. It exhibits remarkable stability in acidic environments, maintaining full biological activity for up to 24 hours.

BPC-157 has gained considerable scientific interest due to its broad biological profile, encompassing cytoprotective and neuroprotective properties [1,2], modulation of inflammatory pathways [3], and promotion of tissue repair, particularly within skeletal muscle and tendons [4].

Increasing attention has also been directed toward the potential role of BPC-157 in the regulation of the gut–brain axis (GBA), a bidirectional neuroimmune and neuroendocrine communication network linking the gastrointestinal tract with the central nervous system (CNS). The GBA is fundamental to maintaining systemic homeostasis and contributes to the pathogenesis of numerous neurological and psychiatric disorders [5]. BPC-157 may interact with key neurotransmitter systems – notably serotonergic and dopaminergic pathways – suggesting potential therapeutic implications for neurodegenerative diseases and mood disorders [6]. Experimental studies further indicate neuroprotective activity in models of traumatic brain injury and stroke [7]. Signaling within the GBA is mediated predominantly via the vagus nerve, through afferent pathways projecting to the nucleus tractus solitarius and onward to multiple cortical and

subcortical regions, whereas efferent signaling influence visceral function [5].

The coordinated integrity of the blood–brain barrier (BBB) and the intestinal epithelial barrier highlight the importance of barrier-stabilising mechanisms in GBA physiology. In this context, the anti-inflammatory and regenerative properties of BPC-157 [2,8] may contribute to functional barrier preservation, providing a plausible mechanistic basis for its reported activity within the GBA [6]. A refined understanding of how BPC-157 interfaces with neural, immune, and metabolic regulation through the GBA may support the development of novel therapeutic strategies targeting conditions in which GBA dysfunction is implicated – particularly neurodegenerative diseases and psychiatric disorders [3,4,7].

This review aimed to comprehensively analyze current experimental and clinical data on the biological activity of BPC-157, with a particular focus on its effects on the GBA and its potential therapeutic relevance in neurodegeneration and psychiatric disease.

## MATERIAL AND METHODS

This review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020) statement to ensure methodological transparency and reproducibility. A comprehensive literature search was performed between January 2000 and June 2025 across the following databases: PubMed/Medline, Scopus, Web of Science, and Cochrane Library. Additionally,



institutional repositories and grey literature sources (e.g., ResearchGate, OpenGrey) were screened to identify supplementary experimental data.

The search strategy combined Medical Subject Headings (MeSH) and free-text terms using Boolean operators (AND/OR). The main keywords included: “BPC-157” OR “Body Protection Compound-157” OR “stable gastric pentadecapeptide” AND “gut–brain axis” OR “gastrointestinal system” OR “neuroprotection” OR “neuroregeneration” OR “angiogenesis” OR “inflammation” OR “psychiatric disorders” OR “neurodegenerative disease.” Reference lists of relevant articles were cross-checked to identify additional eligible studies. Duplicate records were removed manually and with EndNote software.

### **Inclusion criteria**

Studies were included if they:

- investigated the biological or therapeutic effects of BPC-157 in *in vitro*, *in vivo*, or *ex vivo* models
- reported measurable outcomes related to neural, gastrointestinal, vascular, or behavioral functions
- were peer-reviewed and published in English
- provided sufficient methodological details to assess experimental validity.

### **Exclusion criteria**

The following were excluded:

- non-scientific or anecdotal reports, patents, conference abstracts without data, or commercial documents
- studies lacking quantitative results or adequate methodological description
- review articles or duplicates
- publications not related to BPC-157 or without connection to the GBA or neuroregenerative context.

For each eligible study, the following data were extracted:

- the experimental model and animal species
- the BPC-157 dose, route of administration, and duration of treatment
- the main outcomes (neurological, behavioral, or histological)
- any reported safety issues or adverse effects.

During the selection process, priority was given to studies that provided clear results, used appropriate statistical analyses, and showed potential relevance to human disease.

### **Quality assessment and bias control**

To ensure methodological rigor, all included studies were independently evaluated for quality and risk of bias. Preclinical animal studies were assessed according to the ARRIVE 2.0 guidelines and the SYRCLE risk of bias tool, with particular attention to randomization, blinding, sample size justification, and outcome reporting. Clinical and observational studies were appraised using the Joanna Briggs Institute (JBI) critical appraisal checklists for case series and pilot trials. Each study was categorized as having low, moderate, or high risk of bias, based on methodological transparency, internal validity, and reproducibility. Discrepancies between reviewers were resolved through consensus.

Publication bias was mitigated by cross-checking reference lists and searching grey literature to include non-significant or negative findings where available. Due to substantial heterogeneity in experimental design and outcome measures, the overall certainty of evidence within each thematic domain (neuroprotection, angiogenesis, and gut–brain modulation) was synthesized qualitatively rather than quantitatively pooled. A total of 630 records were identified through database searches, of which 64 studies met the predefined inclusion criteria after duplicate removal, screening, and full-text eligibility assessment. The included studies comprised 52 preclinical investigations and 12 early human or observational reports evaluating the effects of BPC-157 in the context of the GBA and neuroregeneration (Table I).

Despite encouraging results, the PRISMA 2020 compliant systematic review demonstrates that the existing body of preclinical evidence on BPC-157 remains relatively limited in number and heterogeneous in methodological quality, underscoring the need for further well-designed studies to verify reproducibility, define optimal dosing strategies, and elucidate the underlying molecular and physiological mechanisms of action.

**Table I.** Systematic study selection process conducted in accordance with PRISMA 2020 guidelines

| Stage             | Description                                              | Number (n) |
|-------------------|----------------------------------------------------------|------------|
|                   | Records identified through database searching            | 630        |
|                   | PubMed / Medline                                         | 234        |
|                   | Scopus                                                   | 198        |
|                   | Web of Science                                           | 176        |
|                   | Cochrane Library                                         | 22         |
| Identification    | Additional records from other sources                    | 0          |
| Duplicate removal | Duplicate records removed                                | 192        |
| Screening         | Records screened (title and abstract)                    | 438        |
| Screening         | Records excluded                                         | 312        |
|                   | Not related to BPC-157                                   | 210        |
|                   | No relevance to GBA or CNS outcomes                      | 58         |
|                   | Insufficient quantitative or methodological data         | 44         |
| Eligibility       | Full-text articles assessed                              | 126        |
| Eligibility       | Full-text articles excluded                              | 62         |
|                   | Review articles without original data                    | 38         |
|                   | Inadequate methodological quality or irrelevant outcomes | 18         |
|                   | Non-English or inaccessible full text                    | 6          |
| Included          | Studies included in qualitative synthesis                | 64         |
|                   | Preclinical studies                                      | 52         |
|                   | Early human or observational studies                     | 12         |

BPC-157 – body protection compound-157; GBA – gut–brain axis; CNS – central nervous system.

## RESULTS AND EVIDENCE SYNTHESIS

### Integrated molecular mechanisms of BPC-157 within tissue protection and the GBA

Preclinical evidence indicates that BPC-157 exhibits a pleiotropic biological profile combining cytoprotective, anti-inflammatory, vasculoprotective, and neuroprotective effects, with particularly consistent findings in the preservation of epithelial and endothelial integrity, stabilization of microvascular function, and reduction of oxidative stress [1,2,6,8]. These actions involve maintenance of intercellular junctions and attenuation of local tissue injury, promoting enhanced repair capacity through a coordinated homeostatic response rather than a single linear pathway [2,6,8]. Experimental data further suggest interactions with serotonergic and dopaminergic systems, which may contribute to behavioral and neuroprotective effects observed in models of brain injury and ischemia, although it remains unclear whether these effects are centrally mediated or secondary to peripheral tissue protection [1,3,6,7].

Within the context of the GBA, BPC-157 has been proposed as a modulator of barrier integrity and neuroimmune signaling. The GBA integrates neural, endocrine, immune, and microbial pathways, with microbiota-derived metabolites such as short-chain fatty acids reinforcing BBB tight junctions and

supporting neurovascular integrity [9]. Disruption of these mechanisms through dysbiosis has been associated with multiple neuropsychiatric disorders [10]. BPC-157, a human-derived pentadecapeptide, has been shown to exert significant cytoprotective actions in gastrointestinal tissues [11], accelerates wound healing via angiogenesis and collagen formation, and enhances microvascular repair through endothelial nitric oxide synthase (eNOS) – dependent mechanisms across multiple species [12,13,14,15]. By restoring intestinal barrier function and reducing peripheral inflammation, BPC-157 may indirectly preserve BBB integrity and modulate vagal afferent and neurotransmitter signaling, positioning it as a potential bridge between gut and brain homeostasis [16,17,18]. Overall, current evidence supports a model in which BPC-157 coordinates vascular, immune, and neural responses to injury, integrating peripheral mucosal defense with central neuroprotection. However, these conclusions are based almost exclusively on animal studies, and the mechanistic relevance, dose–response relationships, and safety profile in humans remain to be established through rigorous translational and clinical investigation [1,2,3,4,6,8,11,12,13,14,15,16,17,18,19].

### BPC-157 and neurodegeneration

BPC-157 demonstrates consistent neuroprotective effects across a range of preclinical models encompassing ischemic, traumatic, and neurotoxic injury. In a rat model of global cerebral ischemia, the



peptide attenuated both early and delayed neuropathological changes, which correlated with improvements in motor and cognitive performance and with modulation of gene expression linked to cellular survival pathways (*Egr1*, *Akt1*, *Kras*), alongside suppression of *Nos2* and NF- $\kappa$ B activity [20]. Concomitantly, BPC-157 exerted pronounced vascular effects, including preservation of endothelial integrity, enhancement of collateral circulation, inhibition of platelet aggregation, and acceleration of thrombolysis, thereby facilitating restoration of microvascular homeostasis following CNS injury [21].

In models of spinal cord compression, early administration of BPC-157 reduced hemorrhage and oedema and resulted in sustained improvement in motor function, with histological preservation of white-matter architecture and absence of demyelinating changes [22]. Efficacy was likewise observed in toxin-induced parkinsonian models, in which BPC-157 alleviated catalepsy, akinesia, and tremor, and normalized thermoregulatory and somatosensory responses [23]. Collectively, these findings indicate robust neuroprotective activity across distinct pathological contexts, although evidence remains limited to preclinical investigations [24].

At the neurochemical level, BPC-157 modulates key neurotransmitter systems, including dopaminergic, serotonergic, GABAergic, and cholinergic pathways, normalizing signaling under conditions of both hyperactivity and hypoactivity [25]. Mechanistically, these effects are associated with activation of the AKT pathway and regulation of VEGF/VEGFR1

signaling, together with inhibition of ERK/MAPK and p38/MAPK cascades, thereby supporting neuronal survival, angiogenesis, and synaptic plasticity [25]. In neurotoxic models, BPC-157 preserved dopaminergic neurons in the substantia nigra and stabilized dopaminergic receptor function, counteracting both receptor blockade and hypersensitivity [26]. Behavioral studies further demonstrate antidepressant, anxiolytic, and antipsychotic-like effects, including attenuation of serotonin syndrome-like manifestations, mitigation of drug-induced behavioral disturbances, and improvement in negative and affective symptoms such as anhedonia and social withdrawal [26,27,28,29]. Analgesic effects observed in multiple paradigms additionally support a role in central nociceptive modulation [29]. Together, these data support further translational evaluation of BPC-157 in neuropsychiatric and neurodegenerative disorders, with particular emphasis on mechanistic specificity and clinical relevance [30].

### Preclinical and early clinical evidence for BPC-157 activity across disease models

Preclinical and early animal studies suggest that BPC-157 may exert neuroprotective, angiogenic, and cytoprotective effects improving motor, cognitive, and tissue repair outcomes through modulation of NO/eNOS signaling, inflammatory pathways, and VEGF-mediated angiogenesis (Table II), however, due to the scarcity of clinical evidence, these effects remain hypothetical and require further investigation.

**Table II.** Representative preclinical studies on the neuroprotective and neuroregenerative effects of BPC-157 in central nervous system injury models

| Disease / injury model                                                           | BPC-157 intervention (dose / route)                                          | Outcome in BPC-157 vs control                                                                                                                                         | Reference |
|----------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Cerebral ischemia – bilateral common carotid artery ligation in rats             | Intraperitoneal BPC-157 administered after reperfusion                       | Reduced neuronal injury; improved motor and memory performance; modulation of <i>Egr1</i> , <i>Akt1</i> , <i>Kras</i> ; suppression of <i>Nos2</i> and NF- $\kappa$ B | [9]       |
| Spinal cord compression (sacral/caudal segments)                                 | BPC-157 (i.p.) administered 10 min post-injury                               | Reduced haemorrhage and oedema within 30 min; improved motor recovery; no white matter demyelination                                                                  | [40]      |
| Schizophrenia-like “positive symptom” model (L-NAME / haloperidol / amphetamine) | BPC-157 co-administered with dopaminergic and NO-system modulators           | Reduced catalepsy and hyperlocomotion; improved social interaction; modulation of D <sub>1</sub> /D <sub>2</sub> receptor activity                                    | [7]       |
| Retinal ischemia induced by retrobulbar L-NAME                                   | BPC-157 (i.p. or i.g.)                                                       | Protection against retinal ischemia; reduced vascular and neuronal damage                                                                                             | [36]      |
| Cerebral venous thrombosis (superior sagittal sinus ligation)                    | BPC-157 (10 $\mu$ g/kg or 10 ng/kg, i.p. or i.g.) administered post-ligation | Reduced brain oedema; normalized blood pressure and vascular parameters; improved survival                                                                            | [43]      |

BPC-157 – body protection compound-157; L-NAME – N $\omega$ -nitro-L-arginine methyl ester; i.p. – intraperitoneal; i.g. – intragastric; NO – nitric oxide; *Egr1* – early growth response protein 1; *Akt1* – protein kinase B alpha; *Kras* – Kirsten rat sarcoma viral oncogene homolog; *Nos2* – inducible nitric oxide synthase; NF- $\kappa$ B – nuclear factor kappa-light-chain-enhancer of activated B cells; D<sub>1</sub>/D<sub>2</sub> receptors – dopamine D<sub>1</sub> and D<sub>2</sub> receptors.

Preclinical studies indicate that BPC-157 exerts reproducible biological effects within neural and vascular systems, associated with preservation of tissue integrity under ischemic, inflammatory, and oxidative

stress and with functional interactions along gut–brain signaling pathways [31,32,33,34,35]. Across animal models of neurodegenerative and psychiatric disorders, BPC-157 consistently improves motor,



cognitive, and behavioral outcomes, including attenuation of parkinsonian features, enhanced recovery after cerebral ischemia and spinal cord injury, and reduction of nociceptive and affective disturbances, accompanied by evidence of vascular and histological protection [36,37,38,39,40,41,42,43]. Human data remain limited but suggest short-term tolerability without serious adverse effects [44,45]. Despite the predominance of small and heterogeneous preclinical studies, the growing body of evidence

supports further translational investigation to define clinical relevance and therapeutic potential [46] (Figure 1).

The majority of studies address neuroprotection and CNS effects, followed by gastroprotection, angiogenesis and wound healing, behavioral and psychiatric models, and pharmacokinetics or safety. This distribution illustrates the growing diversity of research directions and the recent shift toward neuroscience-oriented investigations (Figure 2).

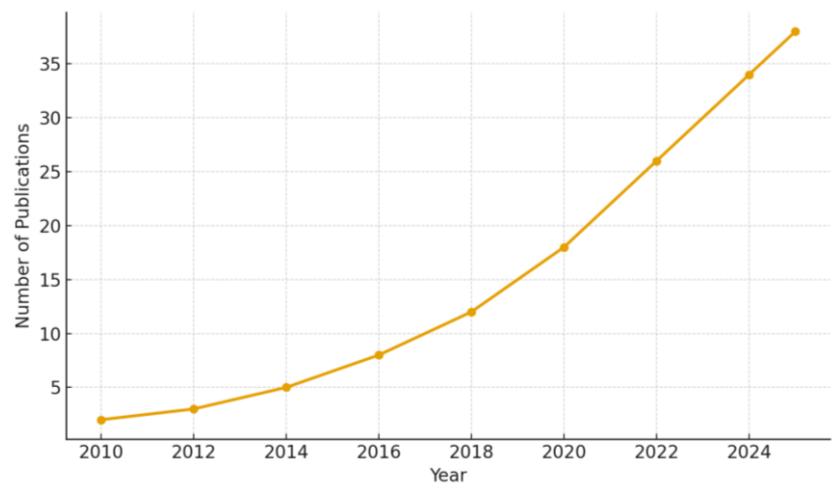



Fig. 1. Increasing trend in the number of scientific publications on BPC-157 from 2010 to 2025



Fig. 2. Research focus areas in BPC-157 studies (2010–2025)

## DISCUSSION

Accumulating experimental evidence suggests that BPC-157 may act as a pleiotropic cytoprotective agent linking gastrointestinal integrity with neural homeostasis, thereby positioning it as a potential modulator of the GBA. Its reported effects span vascular stabilization, attenuation of inflammation, and promotion of tissue repair, mechanisms that may collectively support neuroprotection and neuroregeneration.

Although preclinical studies consistently indicate that BPC-157 mitigates CNS injury, improves functional recovery, and preserves epithelial, endothelial, and microvascular integrity – effects aligned with modulation of monoaminergic signaling and pro-reparative vascular responses – the translation of these findings into human physiology remains limited by the scarcity and methodological weakness of available clinical data (Table II, Figure 2).

The available human evidence is confined to small pilot interventions and observational case series, without randomization, blinding, or predefined clinical



endpoints. Consequently, no reliable conclusions can be drawn regarding efficacy, dose response relationships, mechanism specificity, or long-term safety. This disparity likely reflects unresolved translational challenges, including incomplete pharmacokinetic characterization, uncertain oral bioavailability, heterogeneity of dosing regimens, and the absence of biomarkers enabling confirmation of target engagement in humans.

Two principal strands dominate the literature. The first consists of preclinical experimental studies – largely in rat models – demonstrating cytoprotective, vasculoprotective, and regenerative effects across musculoskeletal, gastrointestinal, and neurovascular systems. Reproducible benefits, such as accelerated muscle healing after quadriceps reinsertion [47] and improved integrity of intestinal anastomoses in surgical models [48], support the internal consistency of peripheral tissue effects. Mechanistic investigations further implicate vascular and metabolic pathways involved in ischemia-reperfusion injury and tissue repair [49]. The second strand comprises narrative and systematic reviews that synthesize these findings while highlighting substantial risks, including non-certified compound use and lack of regulatory approval. Importantly, both strands converge on the conclusion that current evidence is insufficient to justify clinical application and that well-designed randomized trials are required [50].

Within the preclinical domain, the most coherent and reproducible signal arises from neurovascular injury models. In cerebral and hippocampal ischemia, BPC-157 consistently reduces functional deficits and modulates gene expression linked to cellular stress and inflammation (e.g., suppression of *Nos2* and NF- $\kappa$ B), while in spinal cord injury models it improves motor recovery and limits oedema and tissue damage [51]. Studies addressing vascular occlusion further support a role in microvascular stabilization and perfusion recovery [52]. However, across these models, mechanistic attribution remains largely inferential, as few studies employ pathway-specific inhibition or genetic strategies to establish causality. Behavioral and pain-related studies suggest neuromodulatory effects, including dose-dependent analgesia and attenuation of anxiety, depression, and psychosis-like phenotypes, with proposed involvement of dopaminergic, serotonergic, GABAergic, and NMDA systems [53]. Nevertheless, these findings show greater variability across experimental paradigms and are particularly sensitive to methodological factors, limiting their immediate translational relevance. Recent methodological advances have started to fill important gaps related to the absorption, distribution, and detection of BPC-157. Preclinical ADME (Absorption,

Distribution, Metabolism, and Excretion) studies and isotope-based analytical methods now allow reliable identification of BPC-157 and its metabolites in biological samples, creating the basis for future pharmacokinetic and pharmacodynamic studies [54]. Human safety data remain limited but do not indicate relevant short-term adverse effects after intravenous or intra-articular administration [55,56]. However, these observations are insufficient to evaluate long-term safety or clinical efficacy. Regulatory factors further limit clinical translation. BPC-157 is classified by the World Anti-Doping Agency as a prohibited and non-approved substance, highlighting the gap between its commercial availability and the lack of regulatory approval for medical use [57]. Potential safety concerns therefore require careful consideration, particularly in relation to its pro-angiogenic effects, possible tumor-promoting activity, and unpredictable CNS effects linked to neurotransmitter modulation [31]. Available observational data and experimental screening approaches cannot replace properly designed phase I and II clinical trials [32,33]. Although the preclinical evidence base for BPC-157 is substantial and internally consistent with respect to cytoprotection, vascular repair, and neuroregeneration, decisive clinical validation is lacking. Progress will depend on rigorously designed, adequately powered randomized trials with predefined endpoints, robust pharmacokinetic and bioavailability studies, comprehensive safety evaluation, and independent replication of key findings [58]. Until such evidence is available, BPC-157 should be regarded as an experimental compound with mechanistic interest but unproven clinical utility.

## CONCLUSIONS

Preclinical data indicate that BPC-157 acts as a pleiotropic cytoprotective and neuroregenerative peptide integrating inflammatory, vascular, and neurotransmitter pathways. By modulating NO/eNOS and VEGF-mediated signaling and stabilizing epithelial and endothelial barriers, it supports tissue repair across gastrointestinal and neural systems.

Human evidence remains limited to small, uncontrolled studies confirming short-term safety but not efficacy. Robust, randomized clinical trials with validated pharmacokinetic profiling are essential to define dosing, bioavailability, and long-term safety.

Until such data emerge, BPC-157 should be viewed as a promising yet unproven therapeutic candidate bridging gastrointestinal cytoprotection and neuroregeneration.

**Authors' contribution**

Study design – M. Waluga, B. Pietrzyk  
Data collection – M. Waluga, B. Pietrzyk  
Manuscript preparation – B. Pietrzyk, M. Waluga  
Literature research – B. Pietrzyk, M. Waluga  
Final approval of the version to be published – B. Pietrzyk

**REFERENCES**

1. Sikiric P, Rueuman R, Turkovic B, Sever M, Kliceck R, et al. Novel Cytoprotective Mediator, Stable Gastric Pentadecapeptide BPC 157. *Curr Pharm Des.* 2018;24(18):1990–2001. doi: 10.2174/1381612824666180608101119.
2. Józwiak M, Bauer M, Kamysz W, Kleczkowska P. Multifunctionality and Possible Medical Application of the BPC 157 Peptide—Literature and Patent Review. *Pharmaceuticals (Basel).* 2025;18(2):185. doi: 10.3390/ph18020185.
3. Sikiric P, Seiwerth S, Rucman R, Kolenc D, Vuletic LB, Drmic D, et al. Brain-gut Axis and Pentadecapeptide BPC 157: Theoretical and Practical Implications. *Curr Neuropharmacol.* 2016;14(8):857–865. doi: 10.2174/1570159x13666160502153022.
4. Gwyer D, Wragg NM, Wilson SL. Gastric pentadecapeptide body protection compound BPC 157 and its role in accelerating musculoskeletal soft tissue healing. *Cell Tissue Res.* 2019;377(2):153–159. doi: 10.1007/s00441-019-03016-8.
5. Seiwerth S, Rucman R, Turkovic B, Sever M, Kliceck R, Radic B, et al. BPC 157 and Standard Angiogenic Growth Factors. Gastrointestinal Tract Healing, Lessons from Tendon, Ligament, Muscle and Bone Healing. *Curr. Pharm. Des.* 2018;24(18):1972–1989. doi: 10.2174/1381612824666180712110447.
6. Dinan TG, Cryan JF. The Microbiome-Gut-Brain Axis in Health and Disease. *Gastroenterol Clin North Am.* 2017;46(1):77–89. doi: 10.1016/j.gtc.2016.09.007.
7. Vukojević J, Milavić M, Perović D, Ilić S, Čilić AZ, Duran N, et al. Pentadecapeptide BPC 157 and the central nervous system. *Neural Regen Res.* 2022;17(3):482–487. doi: 10.4103/1673-5374.320969.
8. Ilic S, Brcic I, Mester M, Filipovic M, Sever M, Kliceck R, et al. Over-dose insulin and stable gastric pentadecapeptide BPC 157. Attenuated gastric ulcers, seizures, brain lesions, hepatomegaly, fatty liver, breakdown of liver glycogen, profound hypoglycemia and calcification in rats. *J Physiol Pharmacol.* 2009;60 Suppl 7:107–114.
9. Vukojević J, Vrdoljak B, Malekinušić D, Siroglavić M, Milavić M, Kolenc D, et al. The effect of pentadecapeptide BPC 157 on hippocampal ischemia/reperfusion injuries in rats. *Brain Behav.* 2020;10(8):e01726. doi: 10.1002/brb3.1726.
10. Socala K, Doboszewska U, Szopa A, Serefko A, Włodarczyk M, Zielińska A, et al. The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. *Pharmacol Res.* 2021; 172:105840. doi: 10.1016/j.phrs.2021.105840.
11. Góralczyk-Biakowska A, Szmajda-Krygier D, Kozłowska E. The Microbiota-Gut-Brain Axis in Psychiatric Disorders. *Int J Mol Sci.* 2022;23(19):11245. doi: 10.3390/ijms231911245.
12. Sikiric P, Boban Blagaj A, Strbe S, Beketic Oreskovic L, Oreskovic I, et al. The Stable Gastric Pentadecapeptide BPC 157 Pleiotropic Beneficial Activity and Its Possible Relations with Neurotransmitter Activity. *Pharmaceuticals (Basel).* 2024;17(4):461. doi: 10.3390/ph17040461.
13. Xue XC, Wu YJ, Gao MT, Li WG, Zhao N, Wang ZL, et al. Protective effects of pentadecapeptide BPC 157 on gastric ulcer in rats. *World J Gastroenterol.* 2004;10(7):1032–1036. doi: 10.3748/wjg.v10.i7.1032.
14. Vuksic T, Zoricic I, Brcic L, Sever M, Kliceck R, Radic B, et al. Stable gastric pentadecapeptide BPC 157 in trials for inflammatory bowel disease (PL-10, PLD-116, PL14736, Pliva, Croatia) heals ileoileal anastomosis in the rat. *Surg Today.* 2007;37(9):768–777. doi: 10.1007/s00595-006-3498-9.
15. Hsieh MJ, Lee CH, Chueh HY, Chang GJ, Huang HY, Lin Y, et al. Modulatory effects of BPC 157 on vasomotor tone and the activation of Src-Caveolin-1-endothelial nitric oxide synthase pathway. *Sci Rep.* 2020;10(1):17078. doi: 10.1038/s41598-020-74022-y.
16. Tlak Gajger I, Smođiš Škerl MI, Šoštaric P, Šuran J, Sikiric P, Vlajnić J. Physiological and Immunological Status of Adult Honeybees (*Apis mellifera*) Fed Sugar Syrup Supplemented with Pentadecapeptide BPC 157. *Biology (Basel).* 2021;10(9):891. doi: 10.3390/biology10090891.
17. Gjurasic M, Miklic P, Zupancic B, Petrovic D, Zarkovic K, Brcic L, et al. Peptide therapy with pentadecapeptide BPC 157 in traumatic nerve injury. *Regul Pept.* 2010;160(1–3):33–41. doi: 10.1016/j.regpep.2009.11.005.
18. Sikiric P, Seiwerth S, Grabarević Z, Rucman R, Petek M, Jagić V, et al. Beneficial effect of a novel pentadecapeptide BPC 157 on gastric lesions induced by restraint stress, ethanol, indomethacin, and capsaicin neurotoxicity. *Dig Dis Sci.* 1996;41(8):1604–1614. doi: 10.1007/BF02087908.
19. Naveed M, Zhou QG, Xu C, Taleb A, Meng F, Ahmed B, et al. Gut-brain axis: A matter of concern in neuropsychiatric disorders...! *Prog Neuropsychopharmacol Biol Psychiatry.* 2021;104:110051. doi: 10.1016/j.pnpbp.2020.110051.
20. Bisgaard TH, Allin KH, Keefer L, Ananthakrishnan AN, Jess T. Depression and anxiety in inflammatory bowel disease: epidemiology, mechanisms and treatment. *Nat Rev Gastroenterol Hepatol.* 2022;19(11):717–726. doi: 10.1038/s41575-022-00634-6.
21. Strinić D, Belošić Halle Z, Luetić K, Nedic A, Petrović I, Sucić M, et al. BPC 157 counteracts QTc prolongation induced by haloperidol, fluphenazine, clozapine, olanzapine, quetiapine, sulpiride, and metoclopramide in rats. *Life Sci.* 2017;186:66–79. doi: 10.1016/j.lfs.2017.08.006.
22. Perović D, Milavac M, Dokuzovic S, Krežić I, Gojković S, Vranes H, et al. Novel Therapeutic Effects in Rat Spinal Cord Injuries: Recovery of the Definitive and Early Spinal Cord Injury by the Administration of Pentadecapeptide BPC 157 Therapy. *Curr Issues Mol Biol.* 2022;44(5):1901–1927. doi: 10.3390/cimb44050130.
23. Sikiric P, Marovic A, Matoz W, Anic T, Buljat G, Mikus D, et al. A behavioural study of the effect of pentadecapeptide BPC 157 in Parkinson's disease models in mice and gastric lesions induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydronaphthalene. *J Physiol Paris.* 1999;93(6):505–512. doi: 10.1016/s0928-4257(99)00119-9.
24. Strbe S, Smođay IM, Krežić I, Kalogjera L, Vuković V, Zizek H, et al. Innate Vascular Failure by Application of Neuroleptics, Amphetamine, and Domperidone Rapidly Induced Severe Occlusion/Occlusion-like Syndromes in Rats and Stable Gastric Pentadecapeptide BPC 157 as Therapy. *Pharmaceuticals (Basel).* 2023;16(6):788. doi: 10.3390/ph16060788.
25. Tepeš M, Gojković S, Krežić I, Zizek H, Vranes H, Madzar Z, et al. Stable Gastric Pentadecapeptide BPC 157 Therapy for Primary Abdominal Compartment Syndrome in Rats. *Front Pharmacol.* 2021;12:718147. doi: 10.3389/fphar.2021.718147. Erratum in: *Front Pharmacol.* 2022;12:844785. doi: 10.3389/fphar.2021.844785.
26. Jelovac N, Sikiric P, Rucman R, Petek M, Marovic A, Perovic D, et al. Pentadecapeptide BPC 157 attenuates disturbances induced by neuroleptics: the effect on catalepsy and gastric ulcers in mice and rats. *Eur J Pharmacol.* 1999;379(1):19–31. doi: 10.1016/s0014-2999(99)00486-0.
27. Sikiric P, Jelovac N, Jelovac-Gjeldum A, Dodig G, Staresinic M, Anic T, et al. Anxiolytic effect of BPC-157, a gastric pentadecapeptide: shock probe/burying test and light/dark test. *Acta Pharmacol Sin.* 2001;22(3):225–230.
28. Zemba Cilic A, Zemba M, Cilic M, Balenovic I, Strbe S, Ilic S, et al. Pentadecapeptide BPC 157 counteracts L-NAME-induced catalepsy: BPC 157, L-NAME, L-arginine, NO-relation, in the suited rat acute and chronic models resembling 'positive-like' symptoms of schizophrenia. *Behav Brain Res.* 2021;396:112919. doi: 10.1016/j.bbr.2020.112919.
29. Jung YH, Kim H, Kim H, Kim E, Baik J, Kang H. The anti-nociceptive effect of BPC-157 on the incisional pain model in rats. *J Dent Anesth Pain Med.* 2022;22(2):97–105. doi: 10.17245/jdapm.2022.22.2.97.
30. Sikiric P, Udrovic M, Barisic I, Balenovic D, Zivanovic Posilovic G, Strinic D, et al. Stable Gastric Pentadecapeptide BPC 157 as Useful Cytoprotective Peptide Therapy in the Heart Disturbances, Myocardial Infarction, Heart Failure, Pulmonary Hypertension, Arrhythmias, and Thrombosis Presentation. *Biomedicines.* 2022;10(11):2696. doi: 10.3390/biomedicines10112696.
31. Djakovic Z, Djakovic I, Cesarec V, Madzarac G, Becejac T, Zukanovic G, et al. Esophagogastric anastomosis in rats: Improved healing by BPC 157 and L-arginine, aggravated by L-NAME. *World J Gastroenterol.* 2016;22(41):9127–9140. doi: 10.3748/wjg.v22.i41.9127.
32. Lee E, Padgett B. Intra-Articular Injection of BPC 157 for Multiple Types of Knees Pain. *Altern Ther Health Med.* 2021;27(4):8–13.
33. Smođay IM, Petrović I, Kalogjera L, Vranes H, Zizek H, Krežić I, et al. Therapy Effect of the Stable Gastric Pentadecapeptide BPC 157 on Acute Pancreatitis as Vascular Failure-Induced Severe Peripheral and Central Syndrome in Rats. *Biomedicines.* 2022;10(6):1299. doi: 10.3390/biomedicines10061299.
34. Sikiric P, Hahm KB, Blagajc AB, Tvrdeic A, Pavlov KH, Petrovic A, et al. Stable Gastric Pentadecapeptide BPC 157, Robert's Stomach Cytoprotection/Adaptive Cytoprotection/Organoprotection, and Selye's Stress



Coping Response: Progress, Achievements, and the Future. *Gut Liver*. 2020;14(2):153–167. doi: 10.5009/gnl18490.

**35.** Sikirić P, Seiwerth S, Grabarević Z, Rucman R, Petek M, Jagić V, et al. Salutary and prophylactic effect of pentadecapeptide BPC 157 on acute pancreatitis and concomitant gastroduodenal lesions in rats. *Dig Dis Sci*. 1996;41(7):1518–1526. doi: 10.1007/BF02088582.

**36.** Zlatar M, Kokot A, Vuletic LB, Masnec S, Kralj T, Perisa MM, et al. BPC 157 as a Therapy for Retinal Ischemia Induced by Retrobulbar Application of L-NAME in Rats. *Front Pharmacol*. 2021;12:632295. doi: 10.3389/fphar.2021.632295.

**37.** Boban Blagaic A, Blagaic V, Mirt M, Jelovac N, Dodig G, Rucman R, et al. Gastric pentadecapeptide BPC 157 effective against serotonin syndrome in rats. *Eur J Pharmacol*. 2005;512(2–3):173–179. doi: 10.1016/j.ejphar.2005.02.033.

**38.** Knezevic M, Gojkovic S, Krezic I, Zizek H, Malekinusic D, Vrdoljak B, et al. Occluded Superior Mesenteric Artery and Vein. Therapy with the Stable Gastric Pentadecapeptide BPC 157. *Biomedicines*. 2021;9(7):792. doi: 10.3390/biomedicines9070792.

**39.** Kang EA, Han YM, An JM, Park YJ, Sikiric P, Kim DH, et al. BPC157 as Potential Agent Rescuing from Cancer Cachexia. *Curr Pharm Des*. 2018;24(18):1947–1956. doi: 10.2174/138161282466180614082950.

**40.** Perovic D, Kolenc D, Bilić V, Somun N, Drmic D, Elabjer E, et al. Stable gastric pentadecapeptide BPC 157 can improve the healing course of spinal cord injury and lead to functional recovery in rats. *J Orthop Surg Res*. 2019;14(1):199. doi: 10.1186/s13018-019-1242-6.

**41.** Lojo N, Basic Z, Zenko Sever A, Kolenc D, Vukusic D, Drmic D, et al. Effects of Diclofenac, L-NAME, L-Arginine, and Pentadecapeptide BPC 157 on Gastrointestinal, Liver, and Brain Lesions, Failed Anastomosis, and Intestinal Adaptation Deterioration in 24 Hour-Short-Bowel Rats. *PLoS One*. 2016;11(9):e0162590. doi: 10.1371/journal.pone.0162590.

**42.** Zemba Cilic A, Zemba M, Cilic M, Strbe S, Ilic S, Vukojevic J, et al. BPC 157, L-NAME, L-Arginine, NO-Relation, in the Suited Rat Ketamine Models Resembling “Negative-Like” Symptoms of Schizophrenia. *Biomedicines*. 2022;10(7):1462. doi: 10.3390/biomedicines10071462.

**43.** Gojkovic S, Krezic I, Vranes H, Zizek H, Drmic D, Horvat Pavlov K, et al. BPC 157 Therapy and the Permanent Occlusion of the Superior Sagittal Sinus in Rat: Vascular Recruitment. *Biomedicines*. 2021;9(7):744. doi: 10.3390/biomedicines9070744.

**44.** Lee E, Burgess K. Safety of Intravenous Infusion of BPC157 in Humans: A Pilot Study. *Altern Ther Health Med*. 2025;31(5):20–24.

**45.** Du QS, Xie NZ, Huang RB. Recent development of peptide drugs and advance on theory and methodology of peptide inhibitor design. *Med Chem*. 2015;11(3):235–247. doi: 10.2174/157340641166141229163355.

**46.** Tan X, Liu Q, Fang Y, Yang S, Chen F, Wang J, et al. Introducing enzymatic cleavage features and transfer learning realizes accurate peptide half-life prediction across species and organs. *Brief Bioinform*. 2024;25(4):bbae350. doi: 10.1093/bib/bbae350.

**47.** Matek D, Matek I, Staresinic E, Japjec M, Bojanic I, Boban Blagaic A, et al. Stable Gastric Pentadecapeptide BPC 157 as Therapy After Surgical Detachment of the Quadriceps Muscle from Its Attachments for Muscle-to-Bone Reattachment in Rats. *Pharmaceutics*. 2025;17(1):119. doi: 10.3390/pharmaceutics17010119.

**48.** Bajramagic S, Sever M, Basic F, Staresinic M, Skrtic A, Beketic Oreskovic L, et al. Stable Gastric Pentadecapeptide BPC 157 and Intestinal Anastomoses Therapy in Rats—A Review. *Pharmaceutics (Basel)*. 2024;17(8):1081. doi: 10.3390/ph17081081.

**49.** Sikiric P, Skrtic A, Gojkovic S, Krezic I, Zizek H, Lovric E, et al. Cytoprotective gastric pentadecapeptide BPC 157 resolves major vessel occlusion disturbances, ischemia-reperfusion injury following Pringle maneuver, and Budd-Chiari syndrome. *World J Gastroenterol*. 2022;28(1):23–46. doi: 10.3748/wjg.v28.i1.23.

**50.** McGuire FP, Martinez R, Lenz A, Skinner L, Cushman DM. Regeneration or Risk? A Narrative Review of BPC-157 for Musculoskeletal Healing. *Curr Rev Musculoskelet Med*. 2025;18(12):611–619. doi: 10.1007/s12178-025-09990-7.

**51.** Sikiric P, Sever M, Krezic I, Vranes H, Kalogjera L, Smoday IM, et al. New studies with stable gastric pentadecapeptides protecting gastrointestinal tract, significance of counteraction of vascular and multiorgan failure of occlusion/occlusion-like syndrome in cytoprotection/organoprotection. *Inflammopharmacology*. 2024;32(5):3119–3161. doi: 10.1007/s10787-024-01499-8.

**52.** Faisan Smilevitch D, Chaput B, Grolleau JL, Rongieres M, Mansat P. Improvement in quality of life after surgery for glomus tumors of the fingers. *Chir Main*. 2014;33(5):330–335. doi: 10.1016/j.main.2014.07.001.

**53.** Rung JP, Carlsson A, Rydén Markinhuhta K, Carlsson ML. (+)-MK-801 induced social withdrawal in rats; a model for negative symptoms of schizophrenia. *Prog Neuropsychopharmacol Biol Psychiatry*. 2005;29(5):827–832. doi: 10.1016/j.pnpbp.2005.03.004.

**54.** Premuzic Mestrovic I, Smoday IM, Kalogjera L, Krezic I, Zizek H, Vranes H, et al. Antiarrhythmic Sotalol, Occlusion/Occlusion-like Syndrome in Rats, and Stable Gastric Pentadecapeptide BPC 157 Therapy. *Pharmaceutics (Basel)*. 2023;16(7):977. doi: 10.3390/ph16070977.

**55.** Pevec D, Novinscak T, Brcic L, Sipos K, Jukic I, Staresinic M, et al. Impact of pentadecapeptide BPC 157 on muscle healing impaired by systemic corticosteroid application. *Med Sci Monit*. 2010;16(3):BR81–88.

**56.** Vasireddi N, Hahamyan H, Salata MJ, Karns M, Calcei JG, Voos JE, et al. Emerging Use of BPC-157 in Orthopaedic Sports Medicine: A Systematic Review. *HSS J*. 2025;15:563316251355551. doi: 10.1177/15563316251355551.

**57.** Tian T, Jing J, Li Y, Wang Y, Deng X, Shan Y. Stable Isotope Labeling-Based Nontargeted Strategy for Characterization of the In Vitro Metabolic Profile of a Novel Doping BPC-157 in Doping Control by UHPLC-HRMS. *Molecules*. 2023;28(21):7345. doi: 10.3390/molecules28217345.

**58.** Kolovrat M, Gojkovic S, Krezic I, Malekinusic D, Vrdoljak B, Kasnik Kovac K, et al. Pentadecapeptide BPC 157 resolves Pringle maneuver in rats, both ischemia and reperfusion. *World J Hepatol*. 2020;12(5):184–206. doi: 10.4254/wjh.v12.i5.184.