Pathomechanisms of lung injury in hemorrhagic shock
 
 
More details
Hide details
1
Zakład Podstawowych Nauk Medycznych Śląski Uniwersytet Medyczny w Katowicach
 
 
Corresponding author
Jerzy Jochem   

Zakład Podstawowych Nauk Medycznych SUM w Katowicach, 41-902 Bytom, ul. Piekarska 18, tel. 032 397 65 30, faxL 032 397 65 42
 
 
Ann. Acad. Med. Siles. 2009;63:93-99
 
KEYWORDS
ABSTRACT
Hemorrhagic shock provokes a number of changes in the lungs, which may result in acute respiratory distress syndrome (ARDS). The underlying cause is a multiorgan inflammation also affecting the lungs. Inflammatory mediators involved in pathomechanisms of pulmonary damage are mainly produced in the intestine during shock-induced ischaemia. They are responsible for accumulation of inflammatory cells in the lung tissue, thickening of alveolar septa, and oedema due to increased microvascular permeability. Overexpression of adhesion molecules on pulmonary epithelial cells leads to enhanced interaction with inflammatory cells. This, in turn, accelerates epithelial apoptosis, thus causing epithelial cell dysfunction. Priming neutrophils, capable of generating respiratory burst, are characterized by prolonged survival resulting in longer duration of pulmonary inflammation. Experimental data suggest that during hemorrhagic shock, lung tissue can be protected by hypertonic (7.5%) NaCl solution, antioxidants (N-acetylcysteine, vitamin E), allopurinol, 17β-estradiol as well as neutrophil elastase inhibitor – sivelestat. Studies are being carried out with the use of surfactant protein A, nitrous oxide, and small interfering Fas-RNA in hemorrhagic shock.
REFERENCES (42)
1.
Botha A.J., Moore F.A., Moore E.E., Kim F.J., Banerjee A., Peterson V.M. Postinjury neutrophil priming and activation: an early vulnerable window. Surgery 1995; 118: 358-364.
 
2.
Jernigan T.W., Croce M.A., Fabian T.C. Apoptosis and necrosis in the development of acute lung injury after hemorrhagic shock. Am. Surg. 2004; 70: 1094-1098.
 
3.
Ayala A., Chung C.S., Lomas J.L. i wsp. Shock-induced neutrophil mediated priming for acute lung injury in mice: divergent effects of TLR-4 and TLR-4/FasL deficiency. Am. J. Pathol. 2002; 161: 2283-2294.
 
4.
Dayal S.D., Hask G., Lu Q. i wsp. Trauma/hemorrhagic shock mesenteric lymph upregulates adhesion molecule expression and IL-6 production in human umbilical vein endothelial cells. Shock 2002; 17: 491-495.
 
5.
Caruso J.M., Feketeova E., Dayal S.D., Hauser C.J., Deitch E.A. Factors in intestinal lymph after shock increase neutrophil adhesion molecule expression and pulmonary leukosequestration. J. Trauma 2003; 55: 727-733.
 
6.
Adams J.M., Hauser C.J., Adams C.A. Jr, Xu D.Z., Livingston D.H., Deitch E.A. Entry of gut lymph into the circulation primes rat neutrophil respiratory burst in hemorrhagic shock. Crit. Care Med. 2001; 29: 2194-2198.
 
7.
Grotz M.R., Ding J., Guo W., Huang Q., Deitch E.A. Comparison of plasma cytokine levels in rats subjected to superior mesenteric artery occlusion or hemorrhagic shock. Shock 1995; 3: 362-368.
 
8.
Sato H., Kasai K., Tanaka T., Kita T., Tanaka N. Role of tumor necrosis factor-alpha and interleukin-1beta on lung dysfunction following hemorrhagic shock in rats. Med. Sci. Monit. 2008; 14: BR79-87.
 
9.
Jordan J.R., Moore E.E., Sarin E.L. i wsp. Arachidonic acid in postshock mesenteric lymph induces pulmonary synthesis of leukotriene B4. J. Appl. Physiol.. 2008; 104: 1161-1166.
 
10.
Murphy R.C., Gijón M.A. Biosynthesis and metabolism of leukotrienes. Biochem. J. 2007; 405: 379-395.
 
11.
Diebel L.N., Liberati D.M., Ledgerwood A.M., Lucas C.E. Systemic not just mesenteric lymph causes acute lung injury following hemorrhagic shock. Surgery 2008; 144: 686-693.
 
12.
Lomas J.L., Chung C.S., Grutkoski P.S. i wsp. Differential effects of macrophage inflammatory chemokine-2 and keratinocytederived chemokine on hemorrhage-induced neutrophil priming for lung inflammation: assessment by adoptive cells transfer in mice. Shock 2003; 19: 358-365.
 
13.
Abraham E. Neutrophils and acute lung injury. Crit. Care Med. 2003; 31(4 Suppl): S195-S199.
 
14.
Serrao K.L., Fortenberry J.D., Owens M.L., Harris F.L., Brown L.A. Neutrophils induce apoptosis of lung epithelial cells via release of soluble Fas ligand. Am. J. Physiol. Lung Cell Mol. Physiol. 2001; 280: L298-305.
 
15.
Kitamura Y., Hashimoto S., Mizuta N. i wsp. Fas/FasL-dependent apoptosis of alveolar cells after lipopolysaccharide-induced lung injury in mice. Am. J. Respir. Crit. Care Med. 2001; 163: 762-769.
 
16.
Schaub F.J., Han D.K., Liles W.C. i wsp. Fas/FADD-mediated activation of a specific program of inflammatory gene expression in vascular smooth muscle cells. Nat. Med. 2000; 6: 790-796.
 
17.
Ma Y., Liu H., Tu-Rapp H. i wsp. Fas ligation on macrophages enhances IL-1R1-Toll-like receptor 4 signaling and promotes chronic inflammation. Nat. Immunol. 2004; 5: 380-387.
 
18.
Perl M., Chung C.S., Lomas-Neira J. i wsp. Silencing of Fas, but not caspase-8, in lung epithelial cells ameliorates pulmonary apoptosis, inflammation, and neutrophil influx after hemorrhagic shock and sepsis. Am. J. Pathol. 2005; 167: 1545-1559.
 
19.
Hohlbaum A.M., Gregory M.S., Ju S.T., Marshak-Rothstein A. Fas ligand engagement of resident peritoneal macrophages in vivo induces apoptosis and the production of neutrophil chemotactic factors. J. Immunol. 2001; 167: 6217-6224.
 
20.
Deitch E.A., Xu D., Franko L., Ayala A., Chaudry I.H. Evidence favoring the role of the gut as a cytokine-generating organ in rats subjected to hemorrhagic shock. Shock 1994; 1: 141-145.
 
21.
Bernard G.R. N-acetylcysteine in experimental and clinical acute lung injury. Am. J. Med. 1991; 91: 54S-59S.
 
22.
Kooij A., Bosch K.S., Frederiks W.M., Van Noorden C.J. High levels of xanthine oxidoreductase in rat endothelial, epithelial and connective tissue cells. A relation between localization and function? Virchows. Arch. B. Cell. Pathol. Incl. Mol. Pathol. 1992; 62: 143-150.
 
23.
Nakamura M., Motoyama S., Saito S., Minamiya Y., Saito R., Ogawa J. Hydrogen peroxide derived from intestine through the mesenteric lymph induces lung edema after surgical stress. Shock 2004; 21: 160-164.
 
24.
Powers K.A., Zurawska J., Szaszi K., Khadaroo R.G., Kapus A., Rotstein O.D. Hypertonic resuscitation of hemorrhagic shock prevents alveolar macrophage activation by preventing systemic oxidative stress due to gut ischemia/reperfusion. Surgery 2005; 137: 66-74.
 
25.
Fan J., Marshall J.C., Jimenez M., Shek P.N., Zagorski J., Rotstein O.D. Hemorrhagic shock primes for increased expression of cytokine-induced neutrophil chemoattractant in the lung: role in pulmonary inflammation following lipopolysaccharide. J. Immunol. 1998; 161: 440-447.
 
26.
Matute-Bello G., Winn R.K., Jonas M., Chi E.Y., Martin T.R., Liles W.C. Fas (CD95) induces alveolar epithelial cell apoptosis in vivo: implications for acute pulmonary inflammation. Am. J. Pathol. 2001; 158: 153-161.
 
27.
Marty C., Misset B., Tamion F., Fitting C., Carlet J., Cavaillon J.M. Circulating interleukin-8 concentrations in patients with multiple organ failure of septic and nonseptic origin. Crit. Care Med. 1994; 22: 673-679.
 
28.
Kishimoto T., Taga T., Akira S. Cytokine signal transduction. Cell 1994; 76: 253-262.
 
29.
Hierholzer C., Kalff J.C., Omert L. i wsp. Interleukin-6 production in hemorrhagic shock is accompanied by neutrophil recruitment and lung injury. Am. J. Physiol. 1998; 275: L611-21.
 
30.
Thomas S., Karnik S., Balasubramanian K.A. Surgical manipulation of the small intestine and its effect on the lung. J. Surg. Res. 2002; 106: 145-156.
 
31.
Deree J., Martins J.O., Leedom A. i wsp. Hypertonic saline and pentoxifylline reduces hemorrhagic shock resuscitation-induced pulmonary inflammation through attenuation of neutrophil degranulation and proinflammatory mediator synthesis. J. Trauma 2007; 62: 104-111.
 
32.
Diebel L.N., Robinson S.L., Wilson R.F., Dulchavsky S.A. Splanchnic mucosal perfusion effects of hypertonic versus isotonic resuscitation of hemorrhagic shock. Am. Surg. 1993; 59: 495-499.
 
33.
Ciesla D.J., Moore E.E., Zallen G., Biffl W.L., Silliman C.C. Hypertonic saline attenuation of polymorphonuclear neutrophil cytotoxicity: timing is everything. J. Trauma. 2000; 48: 388-395.
 
34.
Shi H.P., Deitch E.A., Da Xu Z., Lu Q., Hauser C.J. Hypertonic saline improves intestinal mucosa barrier function and lung injury after trauma-hemorrhagic shock. Shock 2002; 17: 496-501.
 
35.
Oreopoulos G.D., Bradwell S., Lu Z. i wsp. Synergistic induction of IL-10 by hypertonic saline solution and lipopolysaccharides in murine peritoneal macrophages. Surgery 2001; 130: 157-165.
 
36.
Waxmann K. Shock: ischemia, reperfusion, and inflammation. New Horiz. 1996; 4: 153-160.
 
37.
Chandel N.S., Trzyna W.C., McClintock D.S., Schumacker P.T. Role of oxidants in NF-kappa B activation and TNF-alpha gene transcription induced by hypoxia and endotoxin. J. Immunol. 2000; 165: 1013-1021.
 
38.
Shenkar R., Abraham E. Mechanisms of lung neutrophil activation after hemorrhage or endotoxemia: roles of reactive oxygen intermediates, NF-kappa B, and cyclic AMP response element binding protein. J. Immunol. 1999; 163: 954-962.
 
39.
Sutherland L.M., Edwards Y.S., Murray A.W. Alveolar type II cell apoptosis. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 2001; 129: 267-285.
 
40.
Yu H.P., Shimizu T., Hsieh Y.C. i wsp. Tissue-specific expression of estrogen receptors and their role in the regulation of neutrophil infiltration in various organs following trauma-hemorrhage. J. Leukoc. Biol. 2006; 79: 963-970.
 
41.
Simoncini T., Maffei S., Basta G. i wsp. Estrogens and glucocorticoids inhibit endothelial vascular cell adhesion molecule1 expression by different transcriptional mechanisms. Circ. Res. 2000; 87: 19-25.
 
42.
Toda Y., Takahashi T., Maeshima K. i wsp. A neutrophil elastase inhibitor, sivelestat, ameliorates lung injury after hemorrhagic shock in rats. Int. J. Mol. Med. 2007; 19: 237-243.
 
eISSN:1734-025X
Journals System - logo
Scroll to top