Endothelial function/damage markers and NGAL – intraoperative assessment in blood specimens obtained from different sampling sites during open repair of abdominal aortic aneurysm
 
More details
Hide details
1
Department of Internal Medicine and Metabolic Diseases, Faculty of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
 
2
Department of General and Vascular Surgery, Angiology and Phlebology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
 
3
Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
 
 
Corresponding author
Jan Duława   

Klinika Chorób Wewnętrznych i Metabolicznych, Śląski Uniwersytet Medyczny w Katowicach, ul. Ziołowa 45-47, 40-635 Katowice
 
 
Ann. Acad. Med. Siles. 2025;79:45-55
 
KEYWORDS
TOPICS
ABSTRACT
Introduction:
The aim of the study was to investigate the dynamics of changes in the concentrations of neutrophil gelatinase-associated lipocalin (NGAL), an acute kidney injury biomarker, as well as endothelial function/damage markers including P-selectin, intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1) and the von Willebrand factor (vWf) in blood specimens obtained from different sampling sites during open abdominal aortic aneurysm (AAA) repair.

Material and methods:
Thirty-three patients qualified for elective open repair (ORe) were enrolled in the study. All the mentioned parameters were determined in blood samples drawn from: 1) the cubital vein prior to surgery, and then intraoperatively, 2) the renal vein before aortic cross-clamping, 3) renal vein immediately before aortic cross-clamp removal, 4) cubital vein immediately before aortic cross-clamp removal, 5) inferior vena cava immediately before aortic cross-clamp removal, 6) renal vein at 5 minutes after aortic cross-clamp removal and 7) cubital vein at 5 minutes after aortic cross-clamp removal.

Results:
The P-selectin, ICAM-1 and VCAM-1 concentrations were found to have decreased in the cubital samples drawn immediately before aortic clamp removal and at 5 minutes after aortic clamp removal vs the pre-surgery cubital samples. Rapid changes during surgery were also found in the NGAL, vWf and VCAM-1 concentrations.

Conclusions:
The obtained results seem to evidence the development of an inflammatory response while open AAA repair is still in progress.
REFERENCES (51)
1.
Moll F.L., Powell J.T., Fraedrich G., Verzini F., Haulon S., Waltham M. et al. Management of abdominal aortic aneurysms clinical practice guidelines of the European society for vascular surgery. Eur. J. Vasc. Endovasc. Surg. 2011; 41(Suppl 1): S1–S58, doi: 10.1016/j.ejvs.2010.09.011.
 
2.
Li X., Zhao G., Zhang J., Duan Z., Xin S. Prevalence and trends of the abdominal aortic aneurysms epidemic in general population – a meta-analysis. PLoS One 2013; 8(12): e81260, doi: 10.1371/journal.pone.0081260.
 
3.
Ulug P., Sweeting M.J., von Allmen R.S., Thompson S.G., Powell J.T. Morphological suitability for endovascular repair, non-intervention rates, and operative mortality in women and men assessed for intact abdominal aortic aneurysm repair: systematic reviews with meta-analysis. Lancet 2017; 389(10088): 2482–2491, doi: 10.1016/S0140-6736(17)30639-6.
 
4.
Takagi H., Ando T., Umemoto T. Worse late-phase survival after elective endovascular than open surgical repair for intact abdominal aortic aneurysm. Int. J. Cardiol. 2017; 236: 427–431, doi: 10.1016/j.ijcard.2017.01.075.
 
5.
Powell J.T., Sweeting M.J., Ulug P., Blankensteijn J.D., Lederle F.A., Becquemin J.P. et al. Meta-analysis of individual-patient data from EVAR-1, DREAM, OVER and ACE trials comparing outcomes of endovascular or open repair for abdominal aortic aneurysm over 5 years. Br. J. Surg. 2017; 104(3): 166–178, doi: 10.1002/bjs.10430.
 
6.
Wald R., Waikar S.S., Liangos O., Pereira B.J., Chertow G.M., Jaber B.L. Acute renal failure after endovascular vs open repair of abdominal aortic aneurysm. J. Vasc. Surg. 2006; 43(3): 460–466; discussion 466, doi: 10.1016/j.jvs.2005.11.053.
 
7.
Singer E., Markó L., Paragas N., Barasch J., Dragun D., Müller D.N. et al. Neutrophil gelatinase-associated lipocalin: pathophysiology and clinical applications. Acta Physiol. 2013; 207(4): 663–672, doi: 10.1111/apha.12054.
 
8.
Ho J., Tangri N., Komenda P., Kaushal A., Sood M., Brar R. et al. Urinary, plasma, and serum biomarkers’ utility for predicting acute kidney injury associated with cardiac surgery in adults: a meta-analysis. Am. J. Kidney Dis. 2015; 66(6): 993–1005, doi: 10.1053/j.ajkd.2015.06.018.
 
9.
Zhou F., Luo Q., Wang L., Han L. Diagnostic value of neutrophil gelatinase-associated lipocalin for early diagnosis of cardiac surgery-associated acute kidney injury: a meta-analysis. Eur. J. Cardiothorac. Surg. 2016; 49(3): 746–755, doi: 10.1093/ejcts/ezv199.
 
10.
Peacock W.F. 4th, Maisel A., Kim J., Ronco C. Neutrophil gelatinase associated lipocalin in acute kidney injury. Postgrad. Med. 2013; 125(6): 82–93, doi: 10.3810/pgm.2013.11.2715.
 
11.
Hjortrup P.B., Haase N., Wetterslev M., Perner A. Clinical review: Predictive value of neutrophil gelatinase-associated lipocalin for acute kidney injury in intensive care patients. Crit. Care 2013; 17(2): 211, doi: 10.1186/cc11855.
 
12.
Haase M., Bellomo R., Devarajan P., Schlattmann P., Haase-Fielitz A. Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am. J. Kidney Dis. 2009; 54(6): 1012–1024, doi: 10.1053/j.ajkd.2009.07.020.
 
13.
Bonventre J.V., Zuk A. Ischemic acute renal failure: an inflammatory disease? Kidney Int. 2004; 66(2): 480–485, doi: 10.1111/j.1523-1755.2004.761_2.x.
 
14.
Jones K.G., Brull D.J., Brown L.C., Sian M., Greenhalgh R.M., Humphries S.E. et al. Interleukin-6 (IL-6) and the prognosis of abdominal aortic aneurysms. Circulation 2001; 103(18): 2260–2265, doi: 10.1161/01.cir.103.18.2260.
 
15.
Gelman S. The pathophysiology of aortic cross-clamping and unclamping. Anesthesiology 1995; 82(4): 1026–1060, doi: 10.1097/00000542-199504000-00027.
 
16.
Sumpio B.E., Riley J.T., Dardik A. Cells in focus: endothelial cell. Int. J. Biochem. Cell Biol. 2002; 34(12): 1508–1512, doi: 10.1016/s1357-2725(02)00075-4.
 
17.
Xiao L., Liu Y., Wang N. New paradigms in inflammatory signaling in vascular endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 2014; 306(3): H317–H325, doi: 10.1152/ajpheart.00182.2013.
 
18.
Polek A., Sobiczewski W., Matowicka-Karna J. P-selectin and its role in some diseases. [Article in Polish]. Postepy Hig. Med. Dosw. (Online) 2009; 63: 465–470.
 
19.
Lawson C., Wolf S. ICAM-1 signaling in endothelial cells. Pharmacol. Rep. 2009; 61(1): 22–32, doi: 10.1016/s1734-1140(09)70004-0.
 
20.
Elangbam C.S., Qualls C.W. Jr, Dahlgren R.R. Cell adhesion molecules-update. Vet. Pathol. 1997; 34(1): 61–73, doi: 10.1177/030098589703400113.
 
21.
Blann A.D. Plasma von Willebrand factor, thrombosis, and the endothelium: the first 30 years. Thromb. Haemost. 2006; 95(1): 49–55.
 
22.
Lauritsen J., Gundgaard M.G., Mortensen M.S., Oturai P.S., Feldt-Rasmussen B., Daugaard G. Reliability of estimated glomerular filtration rate in patients treated with platinum containing therapy. Int. J. Cancer 2014; 135(7): 1733–1739, doi: 10.1002/ijc.28816.
 
23.
Levey A.S., Stevens L.A., Schmid C.H., Zhang Y.L., Castro A.F. 3rd, Feldman H.I. et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009; 150(9): 604–612, doi: 10.7326/0003-4819-150-9-200905050-00006.
 
24.
Fukuyama N., Homma K., Wakana N., Kudo K., Suyama A., Ohazama H. et al. Validation of the Friedewald equation for evaluation of plasma LDL-cholesterol. J. Clin. Biochem. Nutr. 2008; 43(1): 1–5, doi: 10.3164/jcbn.2008036.
 
25.
Wesselink E.M., Kappen T.H., van Klei W.A., Dieleman J.M., van Dijk D., Slooter A.J. Intraoperative hypotension and delirium after on-pump cardiac surgery. Br. J. Anaesth. 2015; 115(3): 427–433, doi: 10.1093/bja/aev256.
 
26.
Jia H.M., Zheng Y., Huang L.F., Xin X., Ma W.L., Jiang Y.J. et al. Derivation and validation of plasma endostatin for predicting renal recovery from acute kidney injury: a prospective validation study. Crit. Care 2018; 22(1): 305, doi: 10.1186/s13054-018-2232-5.
 
27.
Yeung A.C.Y., Morozov A., Robertson F.P., Fuller B.J., Davidson B.R. Neutrophil gelatinase-associated lipocalin (NGAL) in predicting acute kidney injury following orthotopic liver transplantation: A systematic review. Int. J. Surg. 2018; 59: 48–54, doi: 10.1016/j.ijsu.2018.09.003.
 
28.
Cowland J.B., Sørensen O.E., Sehested M., Borregaard N. Neutrophil gelatinase-associated lipocalin is up-regulated in human epithelial cells by IL-1 beta, but not by TNF-alpha. J. Immunol. 2003; 171(12): 6630–6639, doi: 10.4049/jimmunol.171.12.6630.
 
29.
Grigoryev D.N., Liu M., Hassoun H.T., Cheadle C., Barnes K.C., Rabb H. The local and systemic inflammatory transcriptome after acute kidney injury. J. Am. Soc. Nephrol. 2008; 19(3): 547–558, doi: 10.1681/ASN.2007040469.
 
30.
Paragas N., Qiu A., Zhang Q., Samstein B., Deng S.X., Schmidt-Ott K.M. et al. The Ngal reporter mouse detects the response of the kidney to injury in real time. Nat. Med. 2011; 17(2): 216–222, doi: 10.1038/nm.2290.
 
31.
Liu Q., Nilsen-Hamilton M. Identification of a new acute phase protein. J. Biol. Chem. 1995; 270(38): 22565–22570, doi: 10.1074/jbc.270.38.22565.
 
32.
Cai L., Rubin J., Han W., Venge P., Xu S. The origin of multiple molecular forms in urine of HNL/NGAL. Clin. J. Am. Soc. Nephrol. 2010; 5(12): 2229–2235, doi: 10.2215/CJN.00980110.
 
33.
Schmidt-Ott K.M. Neutrophil gelatinase-associated lipocalin as a biomarker of acute kidney injury – where do we stand today? Nephrol. Dial. Transplant. 2011; 26(3): 762–764, doi: 10.1093/ndt/gfr006.
 
34.
Brinkman R., HayGlass K.T., Mutch W.A., Funk D.J. Acute kidney injury in patients undergoing open abdominal aortic aneurysm repair: A pilot observational trial. J. Cardiothorac. Vasc. Anesth. 2015; 29(5): 1212–1219, doi: 10.1053/j.jvca.2015.03.027.
 
35.
Blann A.D., Nadar S.K., Lip G.Y. The adhesion molecule P-selectin and cardiovascular disease. Eur. Heart J. 2003; 24(24): 2166–2179, doi: 10.1016/j.ehj.2003.08.021.
 
36.
Sundd P., Pospieszalska M.K., Cheung L.S., Konstantopoulos K., Ley K. Biomechanics of leukocyte rolling. Biorheology 2011; 48(1): 1–35, doi: 10.3233/BIR-2011-0579.
 
37.
Hua S. Targeting sites of inflammation: intercellular adhesion molecule-1 as a target for novel inflammatory therapies. Front. Pharmacol. 2013; 4: 127, doi: 10.3389/fphar.2013.00127.
 
38.
Cook-Mills J.M., Marchese M.E., Abdala-Valencia H. Vascular cell adhesion molecule-1 expression and signaling during disease: regulation by reactive oxygen species and antioxidants. Antioxid. Redox Signal. 2011; 15(6): 1607–1638, doi: 10.1089/ars.2010.3522.
 
39.
Sporn L.A., Chavin S.I., Marder V.J., Wagner D.D. Biosynthesis of von Willebrand protein by human megakaryocytes. J. Clin. Invest. 1985; 76(3): 1102–1106, doi: 10.1172/JCI112064.
 
40.
Wagner D.D., Olmsted J.B., Marder V.J. Immunolocalization of von Willebrand protein in Weibel-Palade bodies of human endothelial cells. J. Cell Biol. 1982; 95(1): 355–360, doi: 10.1083/jcb.95.1.355.
 
41.
De Meyer S.F., Deckmyn H., Vanhoorelbeke K. von Willebrand factor to the rescue. Blood 2009; 113(21): 5049–5057, doi: 10.1182/blood-2008-10-165621.
 
42.
Abu-Zidan F.M., Farrant G., Zwi L.J., Simovic M.O., Day T., Bonham M.J. et al. Plasma von Willebrand factor and intestinal ischaemia-reperfusion injury in rats. Thromb. Res. 1999; 94(6): 353–358, doi: 10.1016/s0049-3848(99)00013-4.
 
43.
Newsholme S.J., Thudium D.T., Gossett K.A., Watson E.S., Schwartz L.W. Evaluation of plasma von Willebrand factor as a biomarker for acute arterial damage in rats. Toxicol. Pathol. 2000; 28(5): 688–693, doi: 10.1177/019262330002800508.
 
44.
Gamulin Z., Forster A., Morel D., Simonet F., Aymon E., Favre H. Effects of infrarenal aortic cross-clamping on renal hemodynamics in humans. Anesthesiology 1984; 61(4): 394–399, doi: 10.1097/00000542-198410000-00006.
 
45.
Colson P., Ribstein J., Séguin J.R., Marty-Ane C., Roquefeuil B. Mechanisms of renal hemodynamic impairment during infrarenal aortic cross-clamping. Anesth. Analg. 1992; 75(1): 18–23, doi: 10.1213/00000539-199207000-00004.
 
46.
Boratyńska M., Kamińska D., Mazanowska O. Pathophysiology of ischemia-reperfusion injury in renal transplantation. [Article in Polish]. Postepy Hig. Med. Dosw. (Online) 2004; 58: 1–8.
 
47.
Yang Q., He G.W., Underwood M.J., Yu C.M. Cellular and molecular mechanisms of endothelial ischemia/reperfusion injury: perspectives and implications for postischemic myocardial protection. Am. J. Transl. Res. 2016; 8(2): 765–777.
 
48.
Gragnano F., Sperlongano S., Golia E., Natale F., Bianchi R., Crisci M. et al. The role of von Willebrand factor in vascular inflammation: from pathogenesis to targeted therapy. Mediators Inflamm. 2017; 2017: 5620314, doi: 10.1155/2017/5620314.
 
49.
Lavie C.J., Arena R., Swift D.L., Johannsen N.M., Sui X., Lee D.C. et al. Exercise and the cardiovascular system: clinical science and cardiovascular outcomes. Circ. Res. 2015; 117(2): 207–219, doi: 10.1161/CIRCRESAHA.117.305205.
 
50.
Galle C., De Maertelaer V., Motte S., Zhou L., Stordeur P., Delville J.P. et al. Early inflammatory response after elective abdominal aortic aneurysm repair: a comparison between endovascular procedure and conventional surgery. J. Vasc. Surg. 2000; 32(2): 234–246, doi: 10.1067/mva.2000.107562.
 
51.
Zonneveld R., Martinelli R., Shapiro N.I., Kuijpers T.W., Plötz F.B., Carman C.V. Soluble adhesion molecules as markers for sepsis and the potential pathophysiological discrepancy in neonates, children and adults. Crit. Care 2014; 18(2): 204, doi: 10.1186/cc13733.
 
eISSN:1734-025X
Journals System - logo
Scroll to top