In vivo and ex vivo impact of nutritional xenobiotics – acrylamide and sodium nitrates – on plasma antioxidant properties
More details
Hide details
1
Department of Toxicology, Faculty of Pharmacy with Division of Laboratory Diagnostics, Wroclaw Medical University
2
Department of Pharmaceutical Biochemistry, Faculty of Pharmacy with Division of Laboratory Diagnostics, Wroclaw Medical University
Corresponding author
Ewa Żurawska-Płaksej
Katedra i Zakład Biochemii Farmaceutycznej, Wydział Farmaceutyczny z Oddziałem Analityki Medycznej, Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu, ul. Borowska 211 A, 50-556 Wrocław
Ann. Acad. Med. Siles. 2019;73:154-162
KEYWORDS
TOPICS
ABSTRACT
Introduction:
The thiol (SH) groups present in human blood plasma play an important role in the oxidative/antioxidative homeostasis of the organism. They are susceptible to the adverse actions of different exo- and endogenous factors. Chronic exposure to different xenobiotics, e.g. nitrogen-containing compounds commonly occurring in food, is especially important. The aim of this study was to investigate the effect of acrylamide (ACR) and sodium nitrates (SN) – (V) and (III) – on the plasma antioxidant properties, as reflected by changes in the SH group levels.
Material and methods:
The concentration of SH groups was measured by Ellman’s method in blood plasma derived from 62 young people (in vivo model; time t0), and after 1 hour of blood plasma incubation with appropriate ACR and SN (III) concentrations (ex vivo model; time t1). The concentrations used corresponded with their daily intake (DIA – daily intake of acrylamide, and DIN – daily intake of sodium nitrates (V) and (III), respectively), estimated on the basis of a nutritional questionnaire.
Results:
In both models, acrylamide and nitrates caused a significant decrease in SH group concentrations, but ACR induced stronger changes. The women consumed a greater amount of these nitrogen-containing compounds compared to the men, probably due to their different dietary habits.
Conclusions:
The obtained results indicate that these nitrogen-containing xenobiotics are important agents lowering antioxidative plasma potential, hence their intake should be controlled.
ACKNOWLEDGEMENTS
The authors thank Dr. Anna Prescha, from the Department of Bromatology and Dietetics, Faculty of Pharmacy, Wroclaw Medical University, for consultation during construction of the nutritional questionnaire.
FUNDING
This research was supported by the statutory activities
of Wroclaw Medical University [number ST-985].
CONFLICT OF INTEREST
The authors do not declare any conflicts of interest.
REFERENCES (58)
1.
Prakash M., Shetty M.S., Tilak P., Anwar N. Total Thiols: Biomedical importance and their alteration in various disorders. Online J. Health Allied Sci. 2009; 8(2): 1–9.
2.
Ha C.E., Bhagavan N.V. Novel insights into the pleiotropic effects of human serum albumin in health and disease. Biochim. Biophys. Acta 2013; 1830(12): 5486–5493, doi: 10.1016/j.bbagen.2013.04.012.
3.
Winther J.R., Thorpe C. Quantification of Thiols and Disulfides. Biochim. Biophys. Acta 2014; 1840(2): 838–846, doi: 10.1016/j.bbagen.2013.03.031.
4.
Kawakami A., Kubota K., Yamada N., Tagami U., Takehana K., Sonaka I., Suzuki E., Hirayama K. Identification and characterization of oxidized human serum albumin: A slight structural change impairs its ligand-binding and antioxidant functions. FEBS J. 2006; 273(14): 3346–3357.
5.
Yu T., Robotham J.L., Yoon Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc. Natl. Acad. Sci. USA 2006; 103(8): 2653–2658.
6.
Żurawska-Płaksej E., Grzebyk E., Marciniak D., Szymańska-Chabowska A., Piwowar A. Oxidatively modified forms of albumin in patients with risk factors of metabolic syndrome. J. Endocrinol. Invest. 2014; 37(9): 819–827, doi: 10.1007/s40618-014-0111-8.
7.
Sawicka E., Kratz E.M., Szymańska B., Guzik A., Wesołowski A., Kowal P., Pawlik-Sobecka L., Piwowar A. Preliminary Study on Selected Markers of Oxidative Stress, Inflammation and Angiogenesis in Patients with Bladder Cancer. Pathol. Oncol. Res. 2019, doi: 10.1007/s12253-019-00620-5.
8.
O’Brien J., Renwick A.G., Constable A., Dybing E., Müller D.J., Schlatter J., Slob W., Tueting W., van Benthem J., Williams G.M., Wolfreys A. Approaches to the risk assessment of genotoxic carcinogens in food: A critical appraisal. Food Chem. Toxicol. 2006; 44(10): 1613–1635.
9.
Lesser S., Pauly L., Volkert D., Stehle P. Nutritional situation of the elderly in Eastern/Baltic and Central/Western Europe – the AgeingNutrition project. Ann. Nutr. Metab. 2008; 52 Suppl 1: 62–71, doi: 10.1159/000115353.
10.
Phuong T.B., Huong N.T., Tien T.Q., Chi H.K., Dunne M.P. Factors associated with health risk behavior among school children in urban Vietnam. Glob. Health Action 2013; 6: 1–9, doi: 10.3402/gha.v6i0.18876.
11.
Visioli F. Xenobiotics and human health: A new view of their pharma-nutritional role. Pharma Nutrition 2015; 3(2): 60–64.
12.
Wu J.C., Lai C.S., Tsai M.L., Ho C.T., Wang Y.J., Pan M.H. Chemopreventive effect of natural dietary compounds on xenobiotic-induced toxicity. J. Food Drug Anal. 2017; 25(1): 176–186, doi: 10.1016/j.jfda.2016.10.019.
13.
Davies K.J. Oxidative Stress, Antioxidant Defenses, and Damage Removal, Repair, and Replacement Systems. IUBMB Life 2000; 50(4–5): 279–289.
14.
Kerley C.P. Dietary nitrate as modulator of physical performance and cardiovascular health. Curr. Opin. Clin. Nutr. Metab. Care 2017; 20(6): 440–446, doi: 10.1097/MCO.0000000000000414.
15.
Semla M., Goc Z., Martiniaková M., Omelka R., Formicki G. Acrylamide: a common food toxin related to physiological functions and health. Physiol. Res. 2017; 66(2): 205–217.
16.
Habermeyer M., Roth A., Guth S., Diel P., Engel K.H., Epe B., Fürst P., Heinz V., Humpf H.U., Joost H.G., Knorr D. et al. Nitrate and nitrite in the diet: How to assess their benefit and risk for human health. Mol. Nutr. Food Res. 2015; 59(1): 106–128, doi: 10.1002/mnfr.201400286.
17.
Lingnert H., Grivas S., Jägerstad M., Skog K., Törnqvist M., Åman P. Acrylamide in food: mechanisms of formation and influencing factors during heating of foods. Scand. J. Nutr. 2002; 46(4): 159–172.
18.
Stadler R.H., Scholz G. Acrylamide: an update on current knowledge in analysis, levels in food, mechanisms of formation, and potential strategies of control. Nutr. Rev. 2004; 62(12): 449–467.
19.
Carere A. Genotoxicity and carcinogenicity of acrylamide: a critical review. Ann. Ist. Super. Sanita 2006; 42(2): 144–155.
20.
Li D., Wang P., Liu Y., Hu X., Chen F. Metabolism of Acrylamide: Interindividual and Interspecies Differences as Well as the Application as Biomarkers. Curr. Drug Metab. 2016; 17(4): 317–326.
21.
Hydzik P., Krośniak M., Francik R., Gomółka E., Ebru E.D., Zagrodzki P. Serum antioxidant parameters in patients poisoned by different xenobiotics. Acta Pol. Pharm. 2016; 73(2): 337–344.
22.
Wilson K.M., Bälter K., Adami H.O., Grönberg H., Vikström A.C., Paulsson B., Törnqvist M., Mucci L.A. Acrylamide exposure measured by food frequency questionnaire and hemoglobin adduct levels and prostate cancer risk in the Cancer of the Prostate in Sweden Study. Int. J. Cancer 2009; 124(10): 2384–2390, doi: 10.1002/ijc.24175.
23.
Babateen A.M., Fornelli G., Donini L.M., Mathers J.C., Siervo M. Assessment of dietary nitrate intake in humans: a systematic review. Am. J. Clin. Nutr. 2018; 108(4): 878–888, doi: 10.1093/ajcn/nqy108.
24.
Hakeem K.R., Sabir M., Ozturk M., Akhtar M.S., Ibrahim F.H., Ashraf M., Ahmad M.S.A. Nitrate and Nitrogen Oxides: Sources, Health Effects and Their Remediation. Rev. Environ. Contam. Toxicol. 2017; 242: 183–217, doi: 10.1007/398_2016_11.
25.
Ilow R., Królicka O., Regulska-Ilow B., Pluta J. Validation of a food frequency questionnaire for dietary intake estimation among students from Wroclaw. Bromat. Chem. Toksykol. 2005; 38: 313–320.
26.
Szponar L., Wolnicka K., Rychlik E. Album of photographs of food products and dishes. National Food and Nutrition Institute. Warszawa 2000.
27.
Grochowska-Niedworok E., Rydelek J., Całyniuk B., Misiarz M., Kisvetrova H. Estimating portion size of selected foods based on photograpy. Probl. Hig. Epidemiol. 2014; 95(3): 696–700.
28.
Anyzewska A., Wawrzyniak A. Evaluating adult dietary intakes of nitrate and nitrite in Polish households during 2006–2012. Rocz. Panstw. Zakl. Hig. 2014; 65: 107–111.
30.
Bekas W., Kowalska D., Łobacz M., Kowalski B. Dietary acrylamide intake by representatives of selected group of white collar workers. Bromat. Chem. Toksykol. 2009; 42: 491–497.
31.
Wawrzyniak A., Hamułka J., Skibińska E. Evaluation of nitrate, nitrite and antioxidant vitamins intake in daily food rations of children aged 1–6 years. Rocz. Panstw. Zakl. Hig. 2003; 54: 65–72.
32.
Rice-Evans C.A., Diplock A.T., Symons M.C.R. Techniques in free radical research. Elsevier Science. New York, Tokyo 1991: 207–230.
33.
Aitken A., Learmonth M. Protein Determination by UV Absorption. In: The Protein Protocols Handbook. Ed.: J.M. Walker. Humana Press. Totowa, UK 2002.
34.
Vural G., Gümüşyayla Ş., Deniz O., Neşelioğlu S., Erel Ö. Relationship between thiol-disulphide homeostasis and visual evoked potentials in patients with multiple sclerosis. Neurol. Sci. 2019; 40(2): 385–391, doi: 10.1007/s10072-018-3660-3.
35.
Davies M.J., Fu S., Wang H., Dean R.T. Stable markers of oxidant damage to proteins and their application in the study of human disease. Free Radic. Biol. Med. 1999; 27(11–12): 1151–1163.
36.
Keramat J., LeBail A., Prost C., Jafari M. Acrylamide in Baking Products: A Review Article. Food Bioprocess Technol. 2011; 4: 530–543.
37.
PubChem Compound Database. U.S. National Library of Medicine. National Center for Biotechnology Information [online]
https://pubchem.ncbi.nlm.nih.g... [accessed August 6, 2019].
38.
Hord N.G., Tang Y., Bryan N.S. Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am. J. Clin. Nutr. 2009; 90(1): 1–10, doi: 10.3945/ajcn.2008.27131.
39.
Tong G.C., Cornwell W.K., Means G.E. Reactions of acrylamide with glutathione and serum albumin. Toxicol. Lett. 2004; 147(2): 127–131.
40.
Xu Y., Cui B., Ran R., Liu Y., Chen H., Kai G., Shi J. Risk assessment, formation, and mitigation of dietary acrylamide: current status and future prospects. Food Chem. Toxicol. 2014; 69: 1–12, doi: 10.1016/j.fct.2014.03.037.
41.
Mojska H., Gielecińska I., Szponar L., Ołtarzewski M. Estimation of the dietary acrylamide exposure of the Polish population. Food Chem. Toxicol. 2010; 48(8–9): 2090–2096, doi: 10.1016/j.fct.2010.05.009.
42.
EFSA’s 11th Scientific Colloquium. Acrylamide carcinogenicity: new evidence in relation to dietary exposure. Sci. Colloq. Series 2008; 11: 1–27, doi: 2903/sp.efsa.2011.EN-121.
43.
Konings E.J., Baars A.J., van Klaveren J.D., Spanjer M.C., Rensen P.M., Hiemstra M., van Kooij J.A., Peters P.W. Acrylamide exposure from foods of the Dutch population and an assessment of the consequent risks. Food Chem. Toxicol. 2003; 41(11): 1569–1579.
44.
Malczyk E., Grochowska-Niedworok E., Wyka J., Misiarz M., Kacprzak M. Evaluation of akrylamid intake diets of secondary school students in Nysa. Bromat. Chem. Toksykol. 2012; 45(3): 685–691.
45.
Hilbig A., Freidank N., Kersting M., Wilhelm M., Wittsiepe J. Estimation of the dietary intake of acrylamide by German infants, children and adolescents as calculated from dietary records and available data on acrylamide levels in food groups. Int. J. Hyg. Environ. Health 2004; 207(5): 463–471.
46.
Piwowar A., Knapik-Kordecka M., Warwas M. Markers of oxidative protein damage in plasma and urine of type 2 diabetic patients. Br. J. Biomed. Sci. 2009; 66(4): 194–199.
47.
Hawkins C.L., Morgan P.E., Davies M.J. Quantification of protein modification by oxidants. Free Radic. Biol. Med. 2009; 46(8): 965–988, doi: 10.1016/j.freeradbiomed.2009.01.007.
48.
Hord N.G., Tang Y., Bryan N.S. Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am. J. Clin. Nutr. 2009; 90(1): 1–10, doi: 10.3945/ajcn.2008.27131.
49.
Fennell T.R., Sumner S.C., Snyder R.W., Burgess J., Friedman M.A. Kinetics of elimination of urinary metabolites of acrylamide in humans. Toxicol. Sci. 2006; 93(2): 256–267.
50.
Wang Y., Townsend M.K., Eliassen A.H., Wu T. Stability and Reproducibility of the Measurement of Plasma Nitrate in Large Epidemiologic Studies. N. Am. J. Med. Sci. (Boston) 2013; 6(2): 82–86.
51.
Polimanti R., Carboni C., Baesso I., Piacentini S., Iorio A., De Stefano G.F., Fuciarelli M. Genetic variability of glutathione S-transferase enzymes in human populations: functional inter-ethnic differences in detoxification systems. Gene 2013; 512(1): 102–107, doi: 10.1016/j.gene.2012.09.113.
52.
Semla M., Goc Z., Martiniaková M., Omelka R., Formicki G. Acrylamide: a common food toxin related to physiological functions and health. Physiol. Res. 2017; 66(2): 205–217.
53.
Marković J., Stošić M., Kojić D., Matavulj M. Effects of acrylamide on oxidant/antioxidant parameters and CYP2E1 expression in rat pancreatic endocrine cells. Acta Histochem. 2018; 120(2): 73–83, doi: 10.1016/j.acthis.2017.12.001.
54.
Gilchrist M., Winyard P.G., Benjamin N. Dietary nitrate–good or bad? Nitric Oxide 2010; 22(2): 104–109, doi: 10.1016/j.niox.2009.10.005.
55.
Bedale W., Sindelar J.J., Milkowski A.L. Dietary nitrate and nitrite: Benefits, risks, and evolving perceptions. Meat Sci. 2016; 120: 85–92, doi: 10.1016/j.meatsci.2016.03.009.
56.
Rorbach-Dolata A., Żurawska-Płaksej E., Piwowar A. Quercetin influences BSA alpha-helical structures of native, ACR- and NaNO2-modified BSAs. Acta Pol. Pharm. 2018; 75(6): 1339–1346, doi: 10.32383/appdr/89724.
57.
Oettl K., Stauber R.E. Physiological and pathological changes in the redox state of human serum albumin critically influence its binding properties. Br. J. Pharmacol. 2007; 151(5): 580–590.
58.
Maciążek-Jurczyk M., Sułkowska A. Spectroscopic analysis of the impact of oxidative stress on the structure of human serum albumin (HSA) in terms of its binding properties. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015; 136 Pt B: 265–282, doi: 10.1016/j.saa.2014.09.034.