Multiple electrode aggregometry – only for cardiologists?
More details
Hide details
Department of Pharmacology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
Adrianna Spałek   

Katedra i Zakład Farmakologii Wydziału Lekarskiego z Oddziałem Lekarsko-Dentystycznym w Zabrzu Śląskiego Uniwersytetu Medycznego w Katowicach, ul. Jordana 38, 41-808 Zabrze, tel. +48 724 155 125
Ann. Acad. Med. Siles. 2016;70:66–72
Multiple electrode aggregometry is one of the newest technologies in platelet function monitoring. The idea of this assay is based on whole blood impedance aggregometry measurements. The main advantages of this device are rapid and easy use, no necessity of sample pre-processing or requiring a specialized laboratory. These features allow one to include this methodology in point-of-care testing methods that can be performed at the patient bedside. Five different pathways of platelet activation can be investigated by adding specific reaction agonists. Antiplatelet drugs, such as acetylsalicylic acid or clopidogrel, inhibit arachidonic acid-dependent and adenosine diphosphate-dependent pathways of platelet activation. Individual patient response to these drugs can be estimated using multiple electrode aggregometry. The identification of low-responders may result in reducing thrombosis events in this group and make antiplatelet treatment more effective. Furthermore, it is supposed to be a reliable method of estimating the risk of perioperative bleeding in adults undergoing cardiac surgery. Other potential clinical applications for this technology are being found. Many studies report its use in determining prognosis in severe sepsis, detecting heparin-induced thrombocytopenia and diagnosing von Willebrand disease. Although multiple electrode aggregometry seems to have great diagnostic potential, more tests need to be performed before it becomes standard hospital equipment.
Geraldo R.B., Sathler P.C., Lourenço A.L., Saito M.S., Cabral L.M., Rampelotto P.H., Castro H.C. Platelets: Still a Therapeutical Target for Haemostatic Disorders. Int. J. Mol. Sci. 2014; 15: 17901–17919.
Hamblin T.J. What about the bleeding time? Br. Med. J. (Clin. Res. Ed.) 1985; 13: 291(6488): 91.
Born GV. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 1962; 194: 927–929.
Paniccia R., Priora R., Liotta A.A., Abbate R. Platelet function tests: a comparative review. Vasc. Health Risk Manag. 2015; 11: 133–148.
Choi J.L., Li S., Han J.Y. Platelet function tests: a review of progresses in clinical application. Biomed. Res. Int. 2014; 2014: 456569.
Abel G. Current status and future prospects of point-of-care testing around the globe. Expert Rev. Mol. Diagn. 2015; 15: 853–855.
Kaiser A.F., Neubauer H., Franken C.C., Krüger J.C., Mügge A., Meves S.H. Which is the best anticoagulant for whole blood aggregometry platelet function testing? Comparison of six anticoagulants and diverse storage conditions. Platelets 2012; 23: 359–367.
Kim Y.G., Suh J.W., Park J.J., Oh I.Y., Yoon C.H., Cho Y.S., Youn T.J., Chae I.H., Choi D.J. Different influences of hematocrit on the results of two Point-Of-Care platelet function tests, the VerifyNow assay and multiple electrode platelet aggregometry. PLoS One 2014; 9: e114053.
Hanke A.A., Roberg K., Monaca E., Sellmann T., Weber C.F., Rahe.
-Meyer N., Görlinger K. Impact of platelet count on results obtained from multiple electrode platelet aggregometry (Multiplate). Eur. J. Med. Res. 2010; 15: 214–219.
Windecker S., Kolh P., Alfonso F., Collet J.P., Cremer J., Falk V., Filippatos G., Hamm C., Head S.J., Jüni P., Kappetein A.P., Kastrati A., Knuuti J., Landmesser U., Laufer G., Neumann F.J., Richter D.J., Schauerte P., Sousa Uva M., Stefanini G.G., Taggart D.P., Torracca L., Valgimigli M., Wijns W., Witkowski A. 2014 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2014; 35: 2541–2619.
Penz S.M., Bernlochner I., Tóth O., Lorenz R., Calatzis A., Siess W. Selective and rapid monitoring of dual platelet inhibition by aspirin and P2Y12 antagonists by using multiple electrode aggregometry. Thromb. J. 2010; 8: 9.
Larsen S.B., Grove E.L., Neergaard-Petersen S., Würtz M., Hvas A.M., Kristensen S.D. Determinants of reduced antiplatelet effect of aspirin in patients with stable coronary artery disease. PLoS One 2015; 10: e0126767.
Neubauer H., Kaiser A. F.C., Endres H.G., Krüger J.C., Engelhardt A., Lask S., Pepinghege F., Kusber A., Mügge A. Tailored antiplatelet therapy can overcome clopidogrel and aspirin resistance – The BOchum CLopidogrel and Aspirin Plan (BOCLA-Plan) to improve antiplatelet therapy. BMC Med. 2011; 9: 3.
Mehta J.L., Mohandas B. Aspirin resistance: Fact or fiction? A point of view. World J. Cardiol. 2010; 2: 280–288.
Ibrahim O., Maskon O., Darinah N., Raymond A.A., Rahman M.M. Aspirin resistance in patients with acute coronary events: risk factors and prevalence as determined by whole blood multiple electrode aggregometry. Pak. J. Med. Sci. 2013; 29: 1319–1322.
Jimenez-Riviera J.J.J., Iribarren J.L., Raya J.M., Nassar I., Lorente L., Perez R., Brouard M., Lorenzo J.M., Garrido P., Barrios Y., Diaz M., Alarco B., Martinez R., Mora M.L. Factors associated with excessive bleeding in cardiopulmonary bypass patients: a nested case-control study. J. Cardiothorac. Surg. 2007; 2: 17.
Petricevic M., Biocina B., Milicic D., Konosic S., Svetina L., Lekić A., Zdilar B., Burcar I., Milosevic M., Brahimaj R., Samardzic J., Gasparovic H. Bleeding risk assessment using whole blood impedance aggregometry and rotational thromboelastometry in patients following cardiac surgery. J. Thromb. Thrombolysis 2013; 36: 514–526.
Petricevic M., Milicic D., White A., Boban M., Mihaljevic M.Z., Piljic D., Rotim A., Buca A., Mihalj M., Biocina B. Development of a concept for a personalized approach in the perioperative antiplatelet therapy administration/discontinuation management based on multiple electrode aggregometry in patients undergoing coronary artery surgery. J. Thromb. Thrombolysis 2015; 40: 383–391.
Hofer A., Kozek-Langenecker S., Schaden E., Panholzer M., Gombotz H. Point-of-care assessment of platelet aggregation in paediatric open heart surgery. Br. J. Anaesth. 2011; 107: 587–592.
Ranucci M., Carlucci C., Isgrò G., Baryshnikova E. A prospective pilot study of platelet function and its relationship with postoperative bleeding in pediatric cardiac surgery. Minerva Anestesiol. 2012; 78: 556–563.
Petricevic M., Biocina B., Milicic D., Konosic S., Ivancan V., Milosevic M., Burcar I., Gasparovic H. Bleeding risk assessment using multiple electrode aggregometry in patients following coronary artery bypass surgery. J. Thromb. Thrombolysis 2013; 35: 31–40.
Negrete-Corona J., Alvarado-Soriano J.C., Reyes-Santiago L.A. Hip fracture as risk factor for mortality in patients over 65 years of age. Case-control study. Acta Ortop. Mex. 2014; 28: 352–362.
Lefaivre K.A., Macadam S.A., Davidson D.J., Gandhi R., Chan H., Broekhuyse H.M. Length of stay, mortality, morbidity and delay to surgery in hip fractures. J. Bone Joint Surg. Br. 2009; 91: 922–927.
Shiga T., Wajima Z., Ohe Y. Is operative delay associated with increased mortality of hip fracture patients? Systematic review, meta-analysis, and meta-regression. Can. J. Anaesth. 2008; 55: 146–154.
Darvish-Kazem S., Gandhi M., Marcucci M., Douketis J.D. Perioperative management of antiplatelet therapy in patients with a coronary stent who need noncardiac surgery: a systematic review of clinical practice guidelines. Chest 2013; 144: 1848–1856.
Clareus A., Fredriksson I., Wallén H., Gordon M., Stark A., Sköldenberg O. Variability of platelet aggregation in patients with clopidogrel treatment and hip fracture: A retrospective case-control study on 112 patients. World J. Orthop. 2015; 6: 439–445.
Mayr F.B., Yende S., Angus D.C. Epidemiology of severe sepsis. Virulence 2014; 5: 4–11.
Kojic D., Siegler B.H., Uhle F., Lichtenstern C., Nawroth P.P., Weigand M.A., Hofer S., Brenner T. Are there new approaches for diagnosis, therapy guidance and outcome prediction of sepsis? World J. Exp. Med. 2015; 5(2): 50–63.
Davies G.R., Mills G.M., Lawrence M., Battle C., Morris K., Hawkins K., Williams P.R., Davidson S., Thomas D., Evans P.A. The role of whole blood impedance aggregometry and its utilisation in the diagnosis and prognosis of patients with systemic inflammatory response syndrome and sepsis in acute critical illness. PLoS One 2014; 9: e108589.
Adamzik M., Görlinger K., Peters J., Hartmann M. Whole blood impedance aggregometry as a biomarker for the diagnosis and prognosis of severe sepsis. Crit. Care 2012; 16: R204.
Simm V., Dirkmann D., Peters J., Hartmann M. Whole blood impedance aggregometry findings in experimental endotoxinemia. Crit. Care 2013; 17: 427.
Woth G., Varga A., Ghosh S., Krupp M., Kiss T., Bogár L., Mühl D. Platelet aggregation in severe sepsis. J. Thromb. Thrombolysis 2011; 31(1): 6–12.
Morel-Kopp M.C., Aboud M., Tan C.W., Kulathilake C., Ward C. Whole blood impedance aggregometry detects heparin-induced thrombo-cytopenia antibodies. Thromb. Res. 2010; 125: e234–239.
Morel-Kopp M.C., Tan C.W., Brighton T.A., McRae S., Baker R., Tran H., Mollee P., Kershaw G., Joseph J., Ward C. Validation of whole blood impedance aggregometry as a new diagnostic tool for HIT: results of a large Australian study. Thromb. Haemost. 2012; 107: 575–583.
Slavik L., Svobodova G., Ulehlova J., Krcova V., Hlusi A., Prochazkova J., Kaletova M., Hrckova Y., Indrak K. The advantages and limitations of impedance aggregometry in detection of heparin-induced thrombocyto-penia. Clin. Lab. 2014; 60: 1319–1324.
Gruel Y., Rollin J., Leroux D., Pouplard C. Heparin-induced thrombocytopenia: recent data. Rev. Med. Interne 2014; 35: 174–182.
Valarche V., Desconclois C., Boutekedjiret T., Dreyfus M., Proulle V. Multiplate whole blood impedance aggregometry: a new tool for von Willebrand disease. J. Thromb. Haemost. 2011; 9: 1645–1647.