Epigenetic modifications and gene expression in cancerogenesis
Marta Poczęta 1  
,   Ewa Nowak 1  
,   Dominik Bieg 1  
,   Ilona Bednarek 1  
More details
Hide details
Zakład Biotechnologii i Inżynierii Genetycznej, Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej w Sosnowcu, Śląski Uniwersytet Medyczny w Katowicach
Marta Poczęta   

Zakład Biotechnologii i Inżynierii Genetycznej, Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej w Sosnowcu, Śląski Uniwersytet Medyczny w Katowicach, ul. Jedności 8, 41-200 Sosnowiec, Polska
Ann. Acad. Med. Siles. 2018;72:80–89
Epigenetic modifications are changes which can regulate gene expression. DNA methylation in gene promoter regions is the most well-known change among epigenetic modifications. The family of DNA methyltransferases is responsible for DNA methylation. Methylation is reversible due to the demethylation reaction, executed by TET proteins. DNA hypomethylation and hypermethylation of gene promoter regions rich in CpG islands belonging to epigenetic mechanisms commonly occur in many tumors. The epigenetic mechanism of malignant transformation is related not only to changes in the level of methylation of oncogenes or tumor suppressor genes, but also to post-translational modifications of histone proteins, forcing changes in the chromatin structure. Certain modifications, such as methylation, acetylation, phosphorylation, ubiquitination, biotinylation, ADP–ribosylation, and sumoylation may affect chromatin condensation, protein and enzyme complexes that determine the availability of DNA, which then affects the condensation, replication, recombination and repair processes, as well as gene expression. Among the modulatory mechanisms of the expression of genes involved in the processes leading to cancer development, two main types of small interfering RNA play an important role: siRNA and miRNA. Research data Show that epigenetic mechanisms are involved in the processes leading to tumor development, and searching for epigenetic biomarkers may be useful in epigenetic cancer therapy.
Jones P.A., Baylin S.B. The epigenomics of cancer. Cell. 2007; 128(4): 683–692.
Choi J.D., Lee J.S. Interplay between epigenetics and genetics in cancer. Genomics Inform. 2013; 11(4): 164–173.
Hatzimichael E., Crook T. Cancer epigenetics: new therapies and new challenges. J. Drug Deliv. 2013; 2013: 529312.
Yun J., Johnson J.L., Hanigan C.L., Locasale J.W. Interactions between epigenetics and metabolizm in cancers. Front. Oncol. 2012; 2: 163.
Johnson C., Warmoes M.O., Shen X., Locasale J.W. Epigenetics and cancer metabolism. Cancer Lett. 2015; 356(2 PtA): 309–314.
Baxter E., Windloch K., Gannon F., Lee J.S. Epigenetic regulation in cancer progression. Cell Biosci. 2014; 4: 45.
Vinci M.C. Sensing the Environment: Epigenetic regulation of gene expression. J. Physic. Chem. Biophysic. 2011; S3: 001, doi: 10.4172/2161-0398. S3–001.
Schleithoff C., Voelter-Mahlknecht S., Dahmke I.N., Mahlknecht U. On the epigenetics of vascular regulation and disease. Clin. Epigenetics 2012; 4(1): 7.
Delpu Y., Cordelier P., Cho W.C., Torrisani J. DNA methylation and cancer diagnosis. Int. J. Mol. Sci. 2013; 14(7): 15029–15058.
Adcock I.M., Ford P., Ito K., Barnes P.J. Epigenetics and airways disease. Respir. Res. 2006; 7: 21.
Parry L., Clarke A.R. The roles of the methyl-CpG binding proteins in cancer. Genes Cancer 2011; 2(6): 618–630.
Sneppen K., Dodd I.B. A simple histone code opens many paths to epigenetics. PLoS Comput. Biol. 2012; 8(8): e1002643.
Czaja W., Mao P., Smerdon M.J. The emerging roles of ATP-dependent chromatin remodeling enzymes in nucleotide excision repair. Int. J. Mol. Sci. 2012; 13(9): 11954–11973.
Adam S., Polo S.E. Chromatin dynamics turing nucleotide excision repair: histones on the move. Int. J. Mol. Sci. 2012; 13(9): 11895–11911.
Grant P.A. A tale of histone modifications. Genome Biol. 2001; 2(4): REVIEWS0003.
Flis S., Flis K., Spławiński J. Modyfikacje epigenetyczne a nowotwory. Nowotwory Journal of Oncology 2007; 57(4): 427–434.
Filippakopoulos P., Picaud S., Mangos M., Keates T., Lambert J.P., Barsyte-Lovejoy D., Felletar I., Volkmer R., Müller S., Pawson T., Gingras A.C., Arrowsmith C.H., Knapp S. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell. 2012; 149(1): 214–231.
Stepulak A., Stryjecka-Zimmer M., Kupisz K., Polberg K. Histone deacetylase inhibitors as a new generation of anti-cancer agents. Post. Hig. Med. Dośw. 2005; 59: 68–74.
Bannister A.J., Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011; 21(3): 381–395.
de Ruijter A.J.M., van Gennip A.H., Caron H.N., Kemp S., van Kuilenburg A.B. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. 2003; 370(Pt 3): 737–749.
Gronbaek K., Hother C., Jones P.A. Epigenetic changes in cancer. APMIS 2007; 115(10): 1039–1059.
Vega A., Baptissart M., Caira F., Brugnon F., Lobaccaro J.M., Volle D.H. Epigenetic: a molecular link between testicular cancer and environmental exposures. Front. Endocrin. (Lausanne) 2012; 3: 150.
Pollock R.M., Richon V.M. Epigenetic approaches to cancer therapy. Drug Discovery Today: Therapeutic Strategies 2009; (6)2: 71–79.
Whetstine J.R., Nottke A., Lan F., Huarte M., Smolikov S., Chen Z., Spooner E., Li E., Zhang G., Colaiacovo M., Shi Y. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 2006; 125(3): 467–481.
Dawson M.A., Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012; 150(1): 12–27.
Barkauskaite E., Jankevicius G., Ladurner A.G., Ahel I., Timinszky G. The recognition and removal of cellular poly(ADP-ribose) signals. FEBS J. 2013; 280(15): 3491–3507.
Perina D., Mikoc A., Ahel J. Ćetković H., Žaja R., Ahel I. Distribution of protein poly(ADP-ribosyl)ation systems across all domains of life. DNA Repair (Amst). 2014; 23: 4–16.
Hassa P.O., Haenni S.S., Elser M., Hottiger M.O. Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol. Mol. Biol. Rev. 2006; 70(3): 789–829.
Gao C., Xiao G., Hu J. Regulation of Wnt/β-catenin signaling by posttranslational modifications. Cell Biosci. 2014; 4(1):13.
Gill G. SUMO and ubiquitin in the nucelus: different functions, similar mechanisms? Genes Dev. 2004; 18(17): 2046–2059.
Banno K., Kisu I., Yanokura M., Masuda K., Kobayashi Y., Ueki A., Tsuji K., Yamagami W., Nomura H., Susumu N., Aoki D. Endometrial cancer and hypermethylation: regulation of DNA and microRNA by epigenetics. Biochem. Res. Int. 2012; 2012: 738274.
Stuwe E., Toth K.F., Aravin A.A. Small but sturdy: small RNAs in cellular memory and epigenetics. Genes Dev. 2014; 28(5): 423–431.
Yamanaka S., Siomi M.C., Siomi H. piRNA clusters and open chromatin structure. Mob. DNA 2014; 5: 22.
Pan X., Thompson R., Meng X., Wu D., Xu L. Tumor-targeted RNA-interference: functional non-viral nanovectors. Am. J. Cancer Res. 2011; 1(1): 25–42.
Gibb E.A., Brown C.J., Lam W.L. The functional role of long non-coding RNA in human carcinomas. Mol. Cancer. 2011; 10: 38.
Sana J., Faltejskova P., Svoboda M., Slaby O. Novel classes of non-coding RNAs and cancer. J. Transl. Med. 2012; 10: 103.
Cao J. The functional role of long non-coding RNAs and epigenetics. Biol. Proced. Online 2014; 16: 11.
Rothschild S.I. MicroRNA therapies in cancer. Mol. Cell Ther. 2014; 2: 7.
Taylor M.A., Schiemann W.P. Therapeutic opportunities for targeting microRNAs in cancer. Mol. Cell. Ther. 2014; 2(30): 1–13.
Chen B., Li H., Zeng X., Yang P., Liu X., Zhao X., Liang S. Roles of microRNA on cancer cell metabolism. J. Transl. Med. 2012; 10: 228.
Chan S.H., Wang L.H. Regulation of cancer metastasis by microRNAs. J. Biomed. Sci. 2015; 22: 9.
Liu X., Chen X., Yu X., Tao Y., Bode A.M., Dong Z., Cao Y. Regulation of microRNAs by epigenetics and their interplay involved in cancer. J. Exp. Clin. Cancer Res. 2013; 32: 96.
Chen P.S., Su J.L., Hung M.C. Dysregulation of microRNAs in cancer. J. Biomed. Sci. 2012; 19: 90.
Das J., Podder S., Ghosh T.C. Insights into the miRNA regulations in human disease genes. BMC Genomics. 2014; 15: 1010.
Le Thomas A., Toth K.F., Aravin A.A. To be or not to be a piRNA: genomic origin and processing of piRNAs. Genome Biol. 2014; 15(1): 204.