The influence of chocolate on human health
 
More details
Hide details
1
Katedra i Zakład Podstawowych Nauk Biomedycznych, Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej w Sosnowcu, Śląski Uniwersytet Medyczny w Katowicach
 
 
Corresponding author
Anna Stolecka-Warzecha   

Katedra i Zakład Podstawowych Nauk Biomedycznych, Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej w Sosnowcu, Śląski Uniwersytet Medyczny w Katowicach, ul. Kasztanowa 3, 41-200 Sosnowiec
 
 
Ann. Acad. Med. Siles. 2018;72:69-79
 
KEYWORDS
TOPICS
ABSTRACT
Recent research confirms the healthy properties of chocolate. However, the history of cocoa as a drug dates back several thousand years. The cocoa tree growing in the equatorial climate in the beliefs of the ancient Maya and Aztecs was a divine gift for humanity providing wisdom and universal knowledge. From its grains, cocoa powder is obtained for the production of chocolate, which contains many bioactive components, including vitamins, minerals, polyphenols and fatty acids. Chocolate positively affects the mood, reduces the susceptibility to depression and reduces oxidative stress. Consuming chocolate during pregnancy can improve the mental state of future mothers and reduce the negative impact of maternal stress on the infant. Due to the high content of flavanols it has antiinflammatory, antiallergic, anti-viral and anticancer properties. It positively affects memory and cognitive skills, and can reduce the risk of dementia. Regular consumption of products containing cocoa reduces the risk of death from cardiovascular causes, especially stroke, and may reduce peripheral insulin resistance in women with type 2 diabetes. It has a stimulating effect on mental and physical exercise. It provides a feeling of fullness, which is why it was added to soldier's food rations during the First World War. However, it should be remembered that the consumption of chocolate raises the level of oxalic acid in the urine, and may lead to exacerbation of acne vulgaris. What is very important, this product is toxic for animals. Chocolate also contains compounds whose health importance is not known in detail.
 
REFERENCES (110)
1.
Lippi D. Sin and pleasure: the history of chocolate in medicine. J. Agric. Food. Chem. 2015; 63(45): 9936–9941.
 
2.
Verna R. The history and science of chocolate. Malays. J. Pathol. 2013; 35(2): 111–121.
 
3.
Dillinger T.L., Barriga P., Escarcega S., Jimenez M., Salazar Lowe D., Grivetti LE. Food of the gods: cure for humanity? A cultural history of the medicinal and ritual use of chocolate. J. Nutr. 2000; 130(8S Suppl.): 2057s–2072s.
 
4.
Bilek M., Stawarczyk K., Stępień A. Analiza zawartości kofeiny w naparach kakao z wykorzystaniem wysokosprawnej chromatografii cieczowej. Bromat. Chem. Toksykol. 2013; 46: 449–454.
 
5.
Houston S.D., Stuart S.T., Taube K.A. Folk classification of Classic Maya pottery. Am. Anthropol. 1989; 91: 720–726.
 
6.
Beckett S.T., Industrial chocolate manufacture and use. Blackwell Publishing Ltd., York 2009.
 
7.
Brillo E., Di Renzo G.C. Chocolate and Other Cocoa Products: Effects on Human Reproduction and Pregnancy. J. Agric. Food. Chem. 2015; 63(45): 9927–9935.
 
8.
Katz D.L., Doughty K., Ali A. Cocoa and Chocolate in Human Health and Disease. Antioxid. Redox Signal. 2011; 15(10): 2779–2811.
 
9.
Steinberg F.M., Bearden M.M., Keen C.L. Cocoa and chocolate flavonoids: Implications for cardiovascular health. J. Am. Diet. Assoc. 2003: 103: 215–223.
 
10.
Hunter J.E., Zhamg J., Kris-Etherton P.M. Cardiovascular disease risk of dietary stearic acid compared with trans, other saturated, and unsaturated fatty acids: a systematic review. Am. J. Clin. Nutr. 2010; 91: 46–63.
 
11.
Kwas linolowy [CID: 5280450] w bazie PubChem, United States National Library of Medicine.
 
12.
Kwas oleinowy [CID: 445639] w bazie PubChem, United States National Library of Medicine.
 
13.
Kwas stearynowy [CID: 5281] w bazie PubChem, United States National Library of Medicine.
 
14.
Kwas palmitynowy [CID: 985] w bazie PubChem, United States National Library of Medicine.
 
15.
Cichosz G., Czeczot H. Tłuszcz mlekowy – źródło antyoksydantów w diecie człowieka. Bromat. Chem. Toksykol. 2011; 54: 8–16.
 
16.
Delgado G.E., Kramer B.K., Lorkowski S., Marz W., von Schacky C., Kleber M.E. Individual omega-9 monounsaturated fatty acids and mortality – The Ludwigshafen Risk and Cardiovascular Health Study. J. Clin. Lipidol. 2017; 11(1): 126–135.
 
17.
Vongraviopap S., Asawanonda P,. Dark chocolate exacerbates acne. Int. J. Dermatol. 2016; 55(5): 587–591.
 
18.
Bojarowicz H., Woźniak B. Wielonienasycone kwasy tłuszczowe oraz ich wpływ na skórę. Probl. Hig. Epidemiol. 2008; 89: 471–475.
 
19.
Achremowicz K., Szary-Sworst K. Wielonienasycone kwasy tłuszczowe czynnikiem poprawy stanu zdrowia człowieka. Żywn. Nauk. Technol. Ja. 2005; 3: 23–35.
 
20.
Kwas arachidonowy [CID: 444899] [ang.] w bazie PubChem, United States National Library of Medicine.
 
21.
Weickert M.O., Pfeiffer A.F. Metabolic effects of dietary fiber consumption and prevention of diabetes. J. Nutr. 2008; 138(3): 439–442.
 
22.
Bojarowicz H., Dźwigulska P. Suplementy diety. Część II. Wybrane składniki suplementów diety praz ich przeznaczenie. Hygeia Public Health. 2012;47: 433–441.
 
23.
Wojtasik A., Kunachowicz H., Pietras E. Błonnik pokarmowy (włókno pokarmowe). W: Normy żywienia dla populacji polskiej. Red. M. Jarosz Instytut Żywności i Żywienia im. prof. dra med. Aleksandra Szczygła, Warszawa 2017, s. 115–129.
 
24.
Kunachowicz H., Nadolna I., Iwanow K., Przygoda B.. Wartość odżywcza wybranych produktów spożywczych i typowych potraw. Wydawnictwo Lekarskie PZWL, Warszawa 2012, s. 25–84.
 
25.
Jarosz M. Normy żywienia dla populacji polskiej – nowelizacja. Instytut Żywności i Żywienia, Warszawa 2017, s. 203–228.
 
26.
Maier J.A., Malpuech-Brugere C., Zimowska W., Rayssiguier Y., Mazur A. Low magnesium promotes endothelial cell dysfunction: implications for atherosclerosis, inflammation and thrombosis. Biochim. Biophys. Acta. 2004; 1689: 13–21.
 
27.
Planells E., Rivero M., Carbonell J., Mataix J., Llopis J. Ability of a cocoa product to correct chronic Mg deficiency in rats. Int. J. Vitam. Nutr.Res. 1999; 69(1): 52-60.
 
28.
Benton D., Donohoe R.T. The effects of nutrients on mood. Public Health Nutr. 1999; 2(3A): 403–409.
 
29.
Olivares M., Uauy R. Copper as an essential nutrient. Am. J. Clin. Nitr. 1996; 63(5): 791s–796s.
 
30.
Uauy R., Olivares M., Gonzalez M. Essentiality of copper in humans. Am. J. Clin. Nitr. 1998; 67(5 Suppl.): 952s–959s.
 
31.
Ando K., Matsui H., Fujita M., Fujita T. Protective effect of dietary potassium against cardiovascular damage in salt-sensitive hypertension: possible role of its antioxidant action. Curr. Vasc. Pharmacol. 2010; 8(1): 59–63.
 
32.
Matysek-Nawrocka M., Cyrankiewicz P. Substancje biologicznie aktywne pozyskiwane z herbaty, kawy i kakao oraz ich zastosowanie w kosmetykach. Post. Fitoter. 2016; 2: 139–144.
 
33.
Moller S.E. Serotonin, carbohydrates, and atypical depression. Pharmacol. Toxicol. 1992; 71(Suppl. 1): 61–71.
 
34.
Rose N., Koperski S., Golomb B.A. Mood food: chocolate and depressive symptoms in a cross-sectional analysis. Arch. Intern. Med. 2010; 170(8): 699–703.
 
35.
Raikkonen K., Pesonen A.K., Jarvenpaa A.L., Strandberg T.E. Sweet babies: chocolate consumption during pregnancy and infant temperament at six months. Early Hum. Dev. 2004; 76(2): 139–145.
 
36.
Waterhouse A.L., Shirley J.R., Donovan J.L. Antioxidants in chocolate. Lancet. 1996; 348(9030): 834.
 
37.
Jeszka M., Flaczyk E., Kobus-Cisowska J., Dziedzic K. Phenolics – characteristic and significance in food technology. Science Nature Technologies 2010; 4: 19.
 
38.
Kobylińska A., Janas K.M. Prozdrowotna rola kwercetyny obecnej w diecie człowieka. Post. Hig. Med. Dosw. 2015; 69: 51–62.
 
39.
Oracz J., Nebesny E., Żyżelewicz D. Changes in the flavan-3-ols, anthocyanins, and flavanols composition of cocoa beans of different. Theobroma cacao L. groups affected by roasting conditions. Eur. Food Res. Technol. 2015; 241: 663–681.
 
40.
Hayek N. Chocolate, gut microbiota, and human health. Front Pharmacol. 2013; 4: 11.
 
41.
Farzaei M.H., Abdollahi M., Rahimi R. Role of dietary polyphenols in the management of peptic ulcer. World J. Gastroenterol. 2015; 21(21): 6499–6517.
 
42.
Majewska M., Czeczot H. Flawanoidy w profilaktyce i terapii. Terapia i leki 2009; 65: 369–377.
 
43.
Decroix L., Tonoli C., Soares D.D., Descat A., Drittij-Reijnders M.J., Weseler A.R., Bast A., Stahl W., Heyman E., Meeusen R. Acute cocoa Flavanols intake has minimal effects on exercise-induced oxidative stress and nitric oxide production in healthy cyclists: a randomized controlled trial. J. Int. Soc. Sports Nutr. 2017; 14: 28.
 
44.
Massee L.A., Ried K., Pase M., Travica N., Yoganathan J., Scholey A., Macpherson H., Kennedy G., Sali A., Pipingas A. The acute and sub-chronic effects of cocoa flavanols on mood, cognitive and cardiovascular health in young healthy adults: a randomized, controlled trial. Front. Pharmacol. 2015; 6: 93.
 
45.
Costa Ch., Tsatsakis A., Mamoulakis Ch., Teodoro M., Briguglio G., Caruso E., Tsoukalas D., Margina D., Dardiotis E., Kouretas D., Fenga C. Current evidence on the effect of dietary polyphenols intake on chronic diseases. Food Chem. Toxicol. 2017; 110: 286–299.
 
46.
Sathyapalan T., Beckett S., Rigby A.S., Mellor D.D., Atkin S.L. High cocoa polyphenol rich chocolate may reduce the burden of the symptoms in chronic fatigue syndrome. Nutr. J. 2010; 9: 55.
 
47.
Hamed M.S., Gambert S., Bliden K.P., Bailon O., Singla A., Antonino M.J., Hamed F., Tantry U.S., Gurbel P.A. Dark chocolate effect on platelet activity, C reactive protein and lipid profile: a pilot study. South Med. J. 2008; 101: 1203–1208.
 
48.
Bordeaux B., Yanek L.R., Moy T.F., White L.W., Becker L.C., Faraday N., Becker D.M. Casual chocolate consumption and inhibition of platelet function. Prev. Cardiol. 2007; 10: 175–180.
 
49.
Scalbert A., Manach C., Morand Ch., Remesy Ch., Jimenez L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 2005;45: 287–306.
 
50.
Grassi D., Desideri G., Ferri C. Protective effects of dark chocolate on endothelial function and diabetes. Curr. Opin. Clin. Nutr. Metab. Care. 2013; 16(6): 662–668.
 
51.
West S.G., McIntyre M.D., Piotrowski M.J., Poupin N., Miller D..L., Preston A.G., Wagner P., Groves L.F., Skulas-Ray A.C. Effects of dark chocolate and cocoa consumption on endothelial function and arterial stiffness in overweight adults. Br. J. Nutr. 2014; 111: 653–661.
 
52.
Grassi D., Desideri G., Croce G., Tiberti S., Aggio A., Ferri C. Flavonoids, vascular function and cardiovascular protection. Curr. Pharm. Des. 2009; 15: 1072–1084.
 
53.
Grassi D., Desideri G., Ferri C. Flavonoids: antioxidants against atherosclerosis. Nutrients. 2010; 2: 889–902.
 
54.
Buijsse B., Feskens E.J., Kok F.J., Kromhout D. Cocoa intake, blood pressure, and cardiovascular mortality: the Zutphen Elderly Study. Arch. Intern. Med. 2006; 166: 411–417.
 
55.
Corti R., Flammer A.J., Hollenberg N.K., Luscher T.F. Cocoa and cardiovascular health. Circulation 2009; 119: 1433–1441.
 
56.
Dong J.Y., Iso H., Yamagishi K., Sawada N., Tsugane S. Chocolate consumption and risk of stroke among men and women: A large population-based, prospective cohort study. Atherosclerosis 2017; 260: 8–12.
 
57.
Agarwal A., Aponte-Mellado A., Premkumar B.J., Shaman A., Gupta S. The effects of oxidative stress on female reproduction: a review. Reprod. Biol. Endocrinol. 2012; 10: 49.
 
58.
Jauniaux E., Poston L., Burton G.J. Placental-related diseases of pregnancy: Involvement of oxidative stress and implications in human evolution. Hum. Reprod. Update 2006; 12: 747–755.
 
59.
Alberti-Fidanza A., Di Renzo G.C., Burini G., Antonelli G., Perriello G. Diet during pregnancy and total antioxidant capacity in maternal and umbilical cord blood. J. Matern. Fetal. Neonat. Med. 2002; 12(1): 59–63.
 
60.
Di Renzo G.C., Brillo E., Romanelli M., Porcaro G., Capanna F., Kanninen T.T., Gerli S., Clerici G. Potential effects of chocolate on human pregnancy: a randomized controlled trial. J. Matern. Fetal. Neonatal. Med. 2012; 25(10): 1860–1867.
 
61.
Crichton G.E., Elias M.F., Dearborn P., Robbins M. Habitual chocolate intake and type 2 diabetes mellitus in the Maine-Syracuse Longitudinal Study: [1975–2010]: Prospective observations. Appetite 2017; 108: 263–269.
 
62.
Curtis P.J., Sampson M., Potter J., Dhatariya K., Kroon P.A., Cassidy A. Chronic ingestion of flavan-3-ols and isoflavones improves insulin sensitivity and lipoprotein status and attenuates estimated 10-year CVD risk in medicated postmenopausal women with type 2 diabetes: A 1-year, double-blind, randomized, controlled trial. Diabetes Care 2012; 35: 226–232.
 
63.
Socci V., Tempesta D., Desideri G., De Gennaro L., Ferrara M. Enhancing Human Cognition with Cocoa Flavonoids. Front Nutr. 2017; 4: 19.
 
64.
Williams R.J., Spencer J.P. Flavonoids, cognition, and dementia: actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic. Biol. Med. 2012; 52(1): 35–45.
 
65.
Taniguchi S., Suzuki N., Masuda M., Hisanaga S., Iwatsubo T., Goedert M., Hasegawa M. Inhibition of heparin-induced tau filament formation by phenothiazines, polyphenols, and porphyrins. J. Biol. Chem. 2005; 280(9): 7614–7623.
 
66.
Commenges D., Scotet V., Renaud S., Jacqmin-Gadda H., Barberger-Gateau P., Dartiques J.F. Intake of flavonoids and risk of dementia. Eur. J. Epidemiol. 2000; 16(4): 357–363.
 
67.
Calderon-Garciduenas L., San Juan Chavez V., Vacaseydel-Aceves N.B., Calderón-Sánchez R., Macías-Escobedo E., Frías C., Giacometto M., Velasquez L., Félix-Villarreal R., Martin J.D., Draheim C., Engle R.W. Chocolate, Air Pollution and Children's Neuroprotection: What Cognition Tools should be at Hand to Evaluate Interventions? Front Pharmacol. 2016; 7: 232.
 
68.
Calderon-Garciduenas L., Mora-Tiscareno A., Franco-Lira M., Cross J.V., Engle R., Aragón-Flores M., Gómez-Garza G., Jewells V., Medina-Cortina H., Solorio E., Chao C.K., Zhu H., Mukherjee P.S., Ferreira-Azevedo L., Torres-Jardón R., D'Angiulli A. Flavonol-rich dark cocoa significantly decreases plasma endothelin-1 and improves cognition in urban children. Front. Pharmacol. 2013; 4: 104.
 
69.
Villarreal-Calderon R., Torres-Jardon R., Palacios-Moreno J., Osnaya N., Pérez-Guillé B., Maronpot R.R., Reed W., Zhu H., Calderón-Garcidueñas L. Urban air pollution targets the dorsal vagal complex and dark chocolate offers neuroprotection. Int. J. Toxicol. 2010; 29(6): 604–615.
 
70.
Spencer J.P. Flavonoids and brain health: multiple effects underpinned by common mechanisms. Genes Nutr. 2009; 4(4): 243–250.
 
71.
Knezevic B., Komatsuzaki Y., de Freitas E., Lukowiak K. A flavanoid component of chocolate quickly reverses an imposed memory deficit. J. Exp. Biol. 2016; 219(Pt 6): 816–823.
 
72.
Crichton G.E., Elias M.F., Alkerwi A. Chocolate intake is associated with better cognitive function: the Maine-Syracuse Longitudinal Study. Appetite 2016; 100: 126–132.
 
73.
Messerli F.H. Chocolate consumption, cognitive function, and Nobel laureates. N. Engl. J. Med. 2012; 367(12): 1562–1564.
 
74.
Linthwaite S., Fuller G.N. Milk, chocolate and Nobel prizes. Pract. Neurol. 2013; 13(1): 63.
 
75.
Dunstan F. Nobel prizes, chocolate and milk: the statistical view. Pract. Neurol. 2013; 13(3): 206–207.
 
76.
Ortega F.B. The intriguing association among chocolate consumption, country's economy and Nobel Laureates. Clin. Nutr. 2013; 32(5): 874–875.
 
77.
Li J. Economy and Nobel prizes: cause behind chocolate and milk? Pract. Neurol. 2014; 14(2): e1.
 
78.
Hernandez-Hernandez C., Viera-Alcaide I., Morales-Sillero A.M., Fernandez-Balanos J., Rodriguez-Gutierrez G. Bioactive compounds in Mexican genotypes of cocoa cotyledon and husk. Food Chem. 2018; 240: 831–839.
 
79.
Engler M.B., Engler M.M., Chen C.Y., Malloy M.J., Browne A., Chiu E.Y., Kwak H.K., Milbury P., Paul S.M., Blumberg J., Mietus-Snyder M.L. Flavonoid-rich dark chocolate improves endothelial function and increases plasma epicatechin concentrations in healthy adults. J. Am. Coll. Nutr. 2004; 23(3): 197–204.
 
80.
Steffen Y., Schewe T., Sies H. (-)-Epicatechin elevates nitric oxide in endothelial cells via inhibition of NADPH oxidase. Biochem. Biophys. Res. Commun. 2007; 359(3): 828–833.
 
81.
Richelle M., Tavazzi I., Enslen M., Offord E.A. Plasma kinetics in man of epicatechin from black chocolate. Eur. J. Clin. Nutr. 1999; 53(1): 22–26.
 
82.
Rein D., Lotito S., Holt R.R., Keen C.L., Schmitz H.H., Fraga C.G. Epicatechin in human plasma: in vivo determination and effect of chocolate consumption on plasma oxidation status. J. Nutr. 2000; 130(8S Suppl.): 2109s–2114s.
 
83.
Schroeter H., Heiss C., Balzer J., Kleinbongard P, Keen CL, Hollenberg NK, Sies H, Kwik-Uribe C, Schmitz HH, Kelm M. (-)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc. Natl. Acad. Sci. USA. 2006; 103(4): 1024–1029.
 
84.
Hurst W.J., Glinski J.A., Miller K.B., Apgar J., Davey M.H., Stuart D.A. Survey of the trans-resveratrol and trans-piceid content of cocoa-containing and chocolate products. J. Agric. Food Chem. 2008; 56(18): 8374–8378.
 
85.
King R., Bomser J., Min D. Bioactivity of resveratrol. Compr. Rev. Food Sci. Food Saf. 2006; 5: 65–70.
 
86.
Braidy N., Jugder B.E., Poljak A., Jayasena T., Mansour H., Nabavi S.M., Sachdev P., Grant R. Resveratrol as a Potential Therapeutic Candidate for the Treatment and Management of Alzheimer's Disease. Curr. Top. Med. Chem. 2016; 16(17): 1951–1960.
 
87.
Abdel-Wahab M.H., El-Mahdy M.A., Abd-Ellah M.F., Helal G.K., Khalifa F., Hamada F.M. Influence of p-coumaric acid on doxorubicin-induced oxidative stress in rat's heart. Pharmacol. Res. 2003; 48(5): 461–465.
 
88.
Roy A.J., Stanely Mainzen Prince P. Preventive effects of p-coumaric acid on lysosomal dysfunction and myocardial infarct size in experimentally induced myocardial infarction. Eur. J. Pharmacol. 2013; 699(1–3): 33–39.
 
89.
Stanely Mainzen Prince P, Roy A.J. p-Coumaric acid attenuates apoptosis in isoproterenol-induced myocardial infarcted rats by inhibiting oxidative stress. Int. J. Cardiol. 2013; 168(4): 3259–3266.
 
90.
Franco R., Onatibia-Astibia A., Martinez-Pinilla E. Health benefits of methylxanthines in cacao and chocolate. Nutrients 2013; 5: 4159–4173.
 
91.
Martinez-Pinilla E., Onatibia-Astibia A., Franco R. The relevance of theobromine for the beneficial effects of cocoa consumption. Front. Pharmacol. 2015; 6: 30.
 
92.
Lambert J.P. Nutrition and health aspects of chocolate. W: Beckett ST. Industrial chocolate manufacture and use. Blackwell Publishing Ltd. York 2009: 623–635.
 
93.
Lutomski J., Hasik J. Fitoterapia w urologii 2000; 4: 8–12.
 
94.
Wikiera A., Mika M. Wpływ metyloksantyn na emulgację i biodostępność lipidów masła szacowaną in vitro. Żywn. Nauk. Technol. Ja. 2012; 3: 55–63.
 
95.
McShea A., Leissle K., Smith M.A. The essence of chocolate: a rich, dark, and well-kept secret. Nutrition 2009; 25(11–12): 1104–1105.
 
96.
Teobromina [CID: 5429] w bazie PubChem, United States National Library of Medicine.
 
97.
Grases F., Rodriguez A, Costa-Bauza A. Theobromine inhibits uric acid crystallization. a potential application in the treatment of uric acid nephrolithiasis. PLoS One. 2014; 9(10): e111184.
 
98.
Usmani O.S., Belvisi M.G., Patel H.J., Crispino N., Birrell M.A., Korbonits M., Korbonits D., Barnes P.J. Theobromine inhibits sensory nerve activation and cough. FASEB. J. 2005; 19(2): 231–233.
 
99.
Cherry D.K., Hing E., Woodwell D.A., Rechtsteiner E.A. National Ambulatory Medical Care Survey: 2006 summary. Natl. Health Stat. Report 2008; 3: 1–39.
 
100.
van Zyl J.M., Derendinger B., Seifart H.I., van der Bijl P. Comparative diffusion of drugs through bronchial tissue. Int. J. Pharm. 2008; 357(1–2): 32–36.
 
101.
Sugimoto N., Miwa S., Hotomi Y., Nakamura H., Tsuchiya H., Yachie A. Theobromine, the primary methylxanthine found in Theobroma cacao, prevents malignant glioblastoma proliferation by negatively regulating phosphodiesterase-4, extracellular signal-regulated kinase, Akt/mammalian target of rapamycin kinase, and nuclear factor–kappa B. Nutr. Cancer. 2014; 66(3): 419–423.
 
102.
Kargul B., Ozcan M., Peker S., Nakamoto T., Simmons W.B., Falster A.U. Evaluation of human enamel surfaces treated with theobromine: a pilot study. Oral Health Prev. Dent. 2012; 10(3): 275–282.
 
103.
Khan N., Monagas M., Andres-Lacueva C., Casas R., Urpí-Sardà M., Lamuela-Raventós R.M., Estruch R. Regular consumption of cocoa powder with milk increases HDL cholesterol and reduces oxidized LDL levels in subjects at high-risk of cardiovascular disease. Nutr. Metab. Cardiovasc. Dis. 2012; 22(12): 1046–1053.
 
104.
Souza S.J., Petrilli A.A., Teixeira A.M., Pontilho P.M., Carioca A.A., Luzia L.A., Souza J.M., Damasceno N.R., Segurado A.A., Rondó P.H. Effect of chocolate and mate tea on the lipid profile of individuals with HIV/AIDS on antiretroviral therapy: A clinical trial. Nutriotion 2017; 43–44: 61–68.
 
105.
Wiśniewska-Łowigus M., Drobik P. Zagrożenia związane ze spożywaniem kofeiny w ciąży. Pielęgniarstwo Polskie 2013; 1(47): 28–33.
 
106.
Zhao J., Gonzalez F., Mu D. Apnea of prematurity: from cause to treatment. Eur. J. Pediatr. 2011; 170(9): 1097–1105.
 
107.
Jabłońska-Ryś E., Zalewska-Korona M., Michalak-Majewska M. Czekolada źródłem szczawianów rozpuszczalnych. Bromat. Chem. Toksykol. 2013; 46: 206–210.
 
108.
Liebman M., Al-Wahsh I.A. Probiotics and other key determinants of dietary oxalate absorption. Adv. Nutr. 2011; 2(3): 254–260.
 
109.
Balcke P., Zazgornik J., Sunder-Plassmann G., Kiss A., Hauser A.C., Gremmel F., Derfler K., Stockenhuber F., Schmidt P. Transient hyperoxaluria after ingestion of chocolate as a high risk factor for calcium oxalate calculi. Nephron 1989; 51(1): 32–34.
 
110.
Caperton C., Block S., Viera M., Keri J., Berman B. Double-blind, Placebo-controlled Study Assessing the Effect of Chocolate Consumption in Subjects with a History of Acne Vulgaris. J. Clin. Aesthet. Dermatol. 2014; 7(5): 19–23.
 
eISSN:1734-025X
Journals System - logo
Scroll to top