Depth and rate of chest compression in CPR simulation during 10-minute continuous external cardiac compression
 
More details
Hide details
1
Katedra Medycyny Ratunkowej i Neurochirurgii Dziecięcej, Wydział Zdrowia Publicznego w Bytomiu, Śląski Uniwersytet Medyczny w Katowicach
2
Katedra Anestezjologii, Intensywnej Terapii i Medycyny Ratunkowej, Wydział Lekarski z Oddziałem Lekarsko-Dentystycznym w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach
3
Katedra Biomechatroniki, Wydział Inżynierii Biomedycznej w Zabrzu, Politechnika Śląska w Gliwicach
4
Katedra Chirurgii Ogólnej, Kolorektalnej i Urazów Wielonarządowych, Wydział Nauk o Zdrowiu w Katowicach, Śląski Uniwersytet Medyczny w Katowicach
CORRESPONDING AUTHOR
Bogusław Stanisław Bucki   

Katedra Medycyny Ratunkowej i Neurochirurgii Dziecięcej, Wydział Zdrowia Publicznego w Bytomiu, Śląski Uniwersytet Medyczny w Katowicach, ul. Piekarska 18, 41-902 Bytom
 
Ann. Acad. Med. Siles. 2017;71:1–6
 
KEYWORDS
TOPICS
ABSTRACT
Introduction:
External cardiac massage has been a basic CPR maneuver for years. The aim of the study was to assess the quality of chest compression during a real-time continuous cardiac compression simulation on a cardio-pulmonary resuscitation mannequin (considering medical rescuer experience and BMI).

Material and methods:
This was a prospective study involving 17 medical rescuers, and 21 Medical Rescue stu-dents and university lecturers. During the simulation the participants performed continuous external cardiac compression for 15 minutes or until the refusal to continue. The depth and rate were analyzed at 60-second periods, leading to average values of cardiopulmonary resuscitation effectiveness. The analysis covered complete research data gathered in real time (10 minute periods).

Results:
The average compression depth significantly decreased from the first (40.66 SE ± 0.80 mm) to the fourth minute of the study (38.21 SE ± 0.95 mm). The average compression rate was significantly different between the initial values (120.97 SE ± 2.83/min) and the sixth minute of the study (123.69 SE ± 2.55/min). The average compression depth amounted to n 36.03 SE ± 1.22 mm in non-professionals and 40.06 SE ± 1.37 mm in professionally active participants. In the participants with a BMI > 25, the only differentiating point in time was the beginning of the task when the average compression depth was 41.97 SE ± 1.12 mm. In the participants with a BMI < 25, there was a gradual decrease in the compression depth within the initial four minutes of the task.

Conclusions:
Rescuer body mass is an important factor influencing proper chest compression depth during continuous cardiac compression. Professional rescuers are capable of performing continuous cardiac compression longer than non-professionals, at the same time maintaining acceptable sternum deflection and compression rate.

 
REFERENCES (22)
1.
Berg R.A., Hemphill R., Abella B.S., Aufderheide T.P., Cave D.M., Hazinski M.F., Lerner E.B., Rea T.D., Sayre M.R., Swor R.A. Part 5: adult basic life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010; 122(18 Suppl. 3): 685–705.
 
2.
Rajab T.K., Pozner C.N., Conrad C., Cohn L.H., Schmitto J.D. Technique for chest compressions in adult CPR. World J. Emerg. Surg. 2011; 6: 41.
 
3.
Lee K. Cardiopulmonary resuscitation: new concept. Tuberc. Respir. Dis. (Seoul) 2012; 72(5): 401–408.
 
4.
Stiell I.G., Brown S.P., Christenson J., Cheskes S., Nichol G., Powell J., Bigham B., Morrison L.J., Larsen J., Hess E., Vaillancourt C., Davis D.P., Callaway C.W. What is the role of chest compression depth during out-of-hospital cardiac arrest resuscitation? Crit. Care. Med. 2012; 40(4): 1192–1198.
 
5.
Jäntti H., Silfvast T., Turpeinen A., Kiviniemi V., Uusaro A. Influence of chest compression rate guidance on the quality of cardiopulmonary resuscitation performed on manikins. Resuscitation 2009; 80(4): 453–457.
 
6.
Bradley S.M. Update in cardiopulmonary resuscitation. Minerva Cardio-angiol. 2011; 59(3): 239–253.
 
7.
Hansen D., Vranckx P., Broekmans T., Eijnde B.O., Beckers W., Vandekerckhove P., Broos P., Dendale P. Physical fitness affects the quality of single operator cardiocerebral resuscitation in healthcare professionals. Eur. J. Emerg. Med. 2012; 19(1): 28–34.
 
8.
Ock S.M., Kim Y.M., Chung Jh., Kim S.H. Influence of physical fitness on the performance of 5-minute continuous chest compression. Eur. J. Emerg. Med. 2011; 18(5): 251–256.
 
9.
Russo S.G., Neumann P., Reinhardt S., Timmermann A., Niklas A., Quintel M., Eich C.B. Impact of physical fitness and biometric data on the quality of external chest compression: a randomised, crossover trial. BMC Emerg. Med. 2011; 4; 11: 20.
 
10.
McDonald C.H., Heggie J., Jones C.M., Thorne C.J., Hulme J. Rescuer fatigue under the 2010 ERC guidelines, and its effect on cardiopulmonary resuscitation (CPR) performance. Emerg. Med. J. 2013; 30(8): 623–627.
 
11.
Ong E.H. Improving the quality of CPR in the community. Singapore Med. J. 2011; 52(8): 586–591.
 
12.
Heidenreich J.W., Bonner A., Sanders A.B. Rescuer fatigue in the elderly: standard vs. hands-only CPR. J. Emerg. Med. 2012; 42(1): 88–92.
 
13.
Heidenreich J.W., Berg R.A., Higdon T.A., Ewy G.A., Kern K.B, Sanders A.B. Rescuer fatigue: standard versus continuous chest-compression cardiopulmonary resuscitation. Acad. Emerg. Med. 2006; 13(10): 1020–1026.
 
14.
Ochoa F.J., Ramalle-Gómara E., Lisa V., Saralegui I. The effect of rescuer fatigue on the quality of chest compressions. Resuscitation 1998; 37(3): 149–152.
 
15.
Abella B.S., Sandbo N., Vassilatos P., Alvarado J.P., O'Hearn N., Wigder H.N., Hoffman P., Tynus K., Vanden Hoek T.L., Becker L.B. Chest compression rates during cardiopulmonary resuscitation are suboptimal: a prospective study during in-hospital cardiac arrest. Circulation 2005; 111(4): 428–434.
 
16.
Ashton A., McCluskey A., Gwinnutt C.L., Keenan A.M. Effect of rescuer fatigue on performance of continuous external chest compressions over 3 min. Resuscitation 2002; 55(2):151–155.
 
17.
Foo N.P., Chang J.H., Lin H.J., Guo H.R. Rescuer fatigue and cardiopulmonary resuscitation positions: A randomized controlled crossover trial. Resuscitation 2010; 81(5): 579–584.
 
18.
Field R.A., Soar J., Davies R.P., Akhtar N., Perkins G.D. The impact of chest compression rates on quality of chest compressions – a manikin study. Resuscitation 2012; 83(3): 360–364.
 
19.
Trowbridge C., Parekh J.N., Ricard M.D., Potts J., Patrickson W.C., Cason C.L. A randomized cross-over study of the quality of cardiopulmonary resuscitation among females performing 30:2 and hands-only cardiopulmonary resuscitation. BMC Nurs 2009; 8: 6.
 
20.
Chi C.H., Tsou J.Y., Su F.C. Effects of compression-to-ventilation ratio on compression force and rescuer fatigue during cardiopulmonary resuscitation. Am. J. Emerg. Med. 2010; 28(9): 1016–1023.
 
21.
Manders S., Geijsel F.E. Alternating providers during continuous chest compressions for cardiac arrest: every minute or every two minutes? Resuscitation 2009; 80(9): 1015–1018.
 
22.
Kovic I., Lulic D., Lulic I. CPR PRO® device reduces rescuer fatigue during continuous chest compression cardiopulmonary resuscitation: a randomized crossover trial using a manikin model. J. Emerg. Med. 2013; 45(4): 570–577.
 
eISSN:1734-025X