Determining ATP concentration in Candida albicans in process of forming germ tube forms
 
More details
Hide details
1
Katedra i Zakład Mikrobiologii i Immunologii, Wydział Lekarski z Oddziałem Lekarsko-Dentystycznym w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach
 
 
Corresponding author
Maria Małgorzata Dróżdż   

Katedra i Zakład Mikrobiologii i Immunologii, Wydział Lekarski z Oddziałem Lekarsko-Dentystycznym w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach, ul. Jordana 19, 41-808 Zabrze
 
 
Ann. Acad. Med. Siles. 2018;72:240-243
 
KEYWORDS
TOPICS
ABSTRACT
Introduction:
Candida albicans (C. albicans) is part of the natural microbiota of the human body. At the same time, it is one of the most common causes of opportunistic systemic fungal infections. Candida albicans is a polymorphic microorganism. The change in phenotype is related to the influence of environmental factors. Due to their polymorphic nature, these yeast-like forms can counter mechanisms of phagocytosis. The aim of the study is to evaluate the adenosine triphosphate (ATP) concentration in the process of forming germ tube forms by C. albicans.

Material and methods:
Candida albicans reference strain ATCC 10231 was used for the study. An ATP assay kit by LKB Wallac was used to measure the ATP concentration. The Merck Millipore cell counter Scepter and cell density meter DensiLaMeter II were used to assess the cell count.

Results:
The ATP concentration after 120 min was higher for C. albicans simulated with L-proline and D-glucose in reference to non-stimulated cells. The highest concentration of ATP was found in the C. albicans cells stimulated with L-proline. Moreover, in this case, the highest number of germ tube forms was found.

Conclusions:
1. The formation of germ tube forms of C. albicans is accompanied by an increase in single cell ATP concentration. 2. Regardless of the type of stimulating substance used in the formation of C. albicans germ tube forms, there is an increase in ATP concentration in a single fungal cell.

 
REFERENCES (17)
1.
Staniszewska M., Bondaryk M., Kowalska M., Magda U., Łuka M., Ochal Z., Kurzątkowski W. Patogeneza i leczenie zakażeń Candida spp. Post. Mikrobiol. 2014; 53(3): 229–240.
 
2.
Wingard J.R., Merz W.G., Saral R. Candida tropicalis: a major pathogen in immunocompromised patients. Ann. Intern. Med. 1979; 91(4): 539–543.
 
3.
Carman A.J., Vylkova S., Lorenz M.C. Role of Acetyl Coenzyme A Synthesis and Breakdown in Alternative Carbon Source Utilization in Candida albicans. Eukaryot. Cell 2008; 7(10): 1733–1741, doi: 10.1128/EC.00253-08.
 
4.
Rane H.S., Bernardo S.M., Raines S.M., Binder J.L., Parra K.J., Lee S.A. Candida albicans VMA3 Is Necessary for V-ATPase Assembly and Function and Contributes to Secretion and Filamentation. Eukaryot. Cell 2013; 12(10): 1369–1382, doi: 10.1128/EC.00118-13.
 
5.
Mayer F.L., Wilson D., Hube B. Candida albicans pathogenicity mechanisms. Virulence 2013; 4(2): 119–128, doi: 10.4161/viru.22913.
 
6.
Dorocka-Bobkowska B., Konopka K. Powstawanie biofilmu Candida i jego znaczenie w patogenezie zakażeń przewlekłych – przegląd piśmiennictwa. Dent. Med. Probl. 2003; 40(2): 405–410.
 
7.
Staniszewska M., Bondaryk M., Piłat J., Siennicka K., Magda U., Kurzątkowski W. Czynniki zjadliwości Candida albicans. Przegl. Epidemiol. 2012; 66: 629–633.
 
8.
Sánchez-Martínez C., Pérez-Martín J. Dimorphism in fungal pathogens: Candida albicans and Ustilago maydis–similar inputs, different outputs. Curr. Opin. Microbiol. 2001; 4(2): 214–221.
 
9.
Jacobsen I.D., Wilson D., Wächtler B., Brunke S., Naglik J.R., Hube B. Candida albicans dimorphism as a therapeutic target. Expert Rev. Anti. Infect. Ther. 2012; 10(1): 85–93, doi: 10.1586/eri.11.152.
 
10.
Han T.L., Cannon R.D., Villas-Bôas S.G. The metabolic basis of Candida albicans morphogenesis and quorum sensing. Fungal Genet. Biol. 2011; 48(8): 747–763, doi: 10.1016/j.fgb.2011.04.002.
 
11.
Sikora M., Gołaś M., Piskorska K., Swoboda-Kopeć E. Czynniki wirulencji grzybów z rodzaju Candida istotne w patogenezie zakażeń występujących u pacjentów żywionych pozajelitowo. Post. Mikrobiol. 2015; 54(3): 224–234.
 
12.
Trzaska D., Kocot-Warat M., Czuba Z. Fenotypowa plastyczność dimorficznych form Candida albicans. Ann. Acad. Med. Siles. 2011; 65(4): 83–89.
 
13.
Mayes P.A. Bioenergetyka: rola ATP. W: Biochemia Harpera. Red.: R.K. Murray, D.K. Granner, P.A. Mayes, V.W. Rodwell. Wyd. Lekarskie PZWL. Warszawa 2006, s. 161–162.
 
14.
Anand S. Growth and Respiration Characteristics of Candida albicans. In: Candida albicans. Cellular and Molecular Biology. Prasad R. (Ed.). Springer-Verlag, Berlin 1991, p. 46–61.
 
15.
Brown A.J., Brown G.D., Netea M.G., Gow N.A. Metabolism impacts upon Candida immunogenicity and pathogenicity at multiple levels. Trends Microbiol. 2014; 22(11): 614–622, doi: 10.1016/j.tim.2014.07.001.
 
16.
Tao L., Zhang Y., Fan S., Nobile C.J., Guan G., Huang G. Integration of the tricarboxylic acid (TCA) cycle with cAMP signaling and Sfl2 pathways in the regulation of CO2 sensing and hyphal development in Candida albicans. PLoS Genet. 2017; 13(8): e1006949, doi: 10.1371/journal.pgen.1006949.
 
17.
Calderone R.A., Fonzi W.A. Virulence factors of Candida albicans. Trends Microbiol. 2001; 9(7): 327–335.
 
eISSN:1734-025X
Journals System - logo
Scroll to top