Post mortem ethanol detection in corpses after embalming – preliminary study
 
More details
Hide details
1
Department of Forensic Medicine and Toxicology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
 
2
Department of Statistics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland
 
 
Corresponding author
Marcin Tomsia   

Katedra Medycyny Sądowej i Toksykologii Sądowo-Lekarskiej, Wydział Nauk Medycznych w Ka-towicach, Śląski Uniwersytet Medyczny w Katowicach, ul. Medyków 18, 40-752 Katowice
 
 
Ann. Acad. Med. Siles. 2022;76:140-146
 
KEYWORDS
TOPICS
ABSTRACT
Nowadays, embalming has become more popular as it is often performed due to sanitary, hygienic, or psychological reasons. In special circumstances, like transporting a corpse from abroad, embalming is an administrative requirement. Embalming is performed using chemical substances that inhibit enzymes, bacteriological activity, and therefore cease decomposition processes. The study shows the toxicological analyses of sampled materials collected during post mortem examinations performed on six corpses subjected to the embalming process. It also presents the concentration of used preservatives in the tissues and body fluids. Analysis performed using gas chromatography with a flame ionization detector (GC-FID) revealed that in five cases, the deceased were intoxicated with ethanol during the time of death, and liquid chromatography-mass spectrometry (LC-MS) excluded the presence of psychoactive substances in all six cases. The results showed that in cases of toxicological analyses of embalmed corpses, it is crucial to secure isolated body fluids, such as cerebrospinal fluid, vitreous humor, and a wide range of reference material.
FUNDING
This work was supported by the institutional grant for young scientists from the Medical University of Silesia, Katowice, Poland, grants no. PCN-2-119/N/0/O and PCN-1-103/N/1/F.
CONFLICT OF INTEREST
The authors have no conflicts of interest to declare that are relevant to the content of this article.
REFERENCES (25)
1.
Öhrström L., Tekin A., Biedermann P., Morozova I., Habicht M., Gascho D. et al. Experimental mummification–In the tracks of the ancient Egyptians. Clin. Anat. 2020; 33(6): 860–871, doi: 10.1002/ca.23568.
 
2.
Brockbals L., Habicht M., Hajdas I., Galassi F.M., Rühli F.J., Kraemer T. Untargeted metabolomics-like screening approach for chemical characterization and differentiation of canopic jar and mummy samples from Ancient Egypt using GC-high resolution MS. Analyst 2018; 143(18): 4503–4512, doi: 10.1039/c8an01288a.
 
3.
Charlier P., Poupon J., Jeannel G.F., Favier D., Popescu S.M., Augias A. et al. The embalming of John of Lancaster, first Duke of Bedford (1435 AD): A forensic analysis. Med. Sci. Law 2016; 56(2): 107–115, doi: 10.1177/0025802415587318.
 
4.
Charlier P., Huynh-Charlier I., Poupon J., Fox C.L., Keyser C., Mougniot C. et al. The heart of Blessed Anne-Madeleine Remuzat: a biomedical approach of "miraculous" heart conservation. Cardiovasc. Pathol. 2014; 23(6): 344–350, doi: 10.1016/j.carpath.2014.07.005.
 
5.
Hayashi S., Naito M., Kawata S., Qu N., Hatayama N., Hirai S. et al. History and future of human cadaver preservation for surgical training: from formalin to saturated salt solution method. Anat. Sci. Int. 2016; 91(1): 1–7, doi: 10.1007/s12565-015-0299-5.
 
6.
Alunni-Perret V., Kintz P., Ludes B., Ohayon P., Quatrehomme G. Determination of heroin after embalmment. Forensic Sci. Int. 2003; 134(1): 36–39, doi: 10.1016/s0379-0738(03)00082-3.
 
7.
Crosado B., Löffler S., Ondruschka B., Zhang M., Zwirner J., Hammer N. Phenoxyethanol-based embalming for anatomy teaching: An 18 years’ experience with crosado embalming at the University of Otago in New Zealand. Anat. Sci. Educ. 2020; 13(6): 778–793, doi: 10.1002/ase.1933.
 
8.
Venne G., Zec M.L., Welte L., Noel G.P.J.C. Qualitative and quantitative comparison of Thiel and phenol-based soft-embalmed cadavers for surgery training. Anat. Histol. Embryol. 2020; 49(3): 372–381, doi: 10.1111/ahe.12539.
 
9.
McKendrick M., Sadler A., Taylor A., Seeley J., Filipescu T., Mustafa A. et al. The effect of an ultrasound-activated needle tip tracker needle on the performance of sciatic nerve block on a soft embalmed Thiel cadaver. Anaesthesia 2021; 76(2): 209–217, doi: 10.1111/anae.15211.
 
10.
Müller L., Bischoff M., Tschernig T. UV-C irradiation reduces the experimentally induced bacterial load on the surface of a human cadaver: An additional option for the preservation of cadavers in anatomy. Clin. Anat. 2020; 33(1): 113–116, doi: 10.1002/ca.23481.
 
11.
Rajasekhar S.S.S.N., Kumar V.D. The cadaver conundrum: Sourcing and anatomical embalming of human dead bodies by medical schools during and after COVID-19 pandemic: review and recommendations. SN Compr. Clin. Med. 2021; 3(4): 924–936, doi: 10.1007/s42399-021-00778-7.
 
12.
Rodic N., Tahir M. Positive postmortem test for SARS-CoV-2 following embalming in confirmed COVID-19 autopsy. Am. J. Clin. Pathol. 2021; 155(2): 318–320, doi: 10.1093/ajcp/aqaa220.
 
13.
Amaker B.H., Chandler F.W. Jr, Huey L.O., Colwell R.M. Molecular detection of JC virus in embalmed, formalin-fixed, paraffin-embedded brain tissue. J. Forensic Sci. 1997; 42(6): 1157–1159.
 
14.
Balta J.Y., Cryan J.F., O’Mahony S.M. The antimicrobial capacity of embalming solutions: a comparative study. J. Appl. Microbiol. 2019; 126(3): 764–770, doi: 10.1111/jam.14191.
 
15.
Brenner E. Human body preservation – old and new techniques. J. Anat. 2014; 224(3): 316–344, doi: 10.1111/joa.12160.
 
16.
Bajracharya S., Magar A. Embalming: an art of preserving human body. Kathmandu Univ. Med. J. 2006; 4(4): 554–557.
 
17.
Uekusa K., Hayashida M., Ohno Y. Forensic toxicological analyses of drugs in tissues in formalin solutions and in fixatives. Forensic Sci. Int. 2015; 249: 165–172, doi: 10.1016/j.forsciint.2015.01.028.
 
18.
Ameline A., Raul J.S., Kintz P. Testing for midazolam and oxycodone in blood after formalin-embalmment: About a complex medico-legal case. Drug Test. Anal. 2019; 11(9): 1460–1464, doi: 1010.1002/dta.2660.
 
19.
Winek C.L., Wahba W.W., Rozin L., Winek C.L. Jr. Determination of ethchlorvynol in body tissues and fluids after embalmment. Forensic Sci. Int. 1988; 37(3): 161–166, doi: 10.1016/0379-0738(88)90180-6.
 
20.
Steinhauer J.R., Volk A., Hardy R., Konrad R., Daly T., Robinson C.A. Detection of ketosis in vitreous at autopsy after embalming. J. Forensic Sci. 2002; 47(1): 221–223.
 
21.
Fagnani E., Melios C.B., Pezza L., Pezza H.R. Chromotropic acid-formaldehyde reaction in strongly acidic media. The role of dissolved oxygen and replacement of concentrated sulphuric acid. Talanta 2003; 60(1): 171–176, doi: 10.1016/S0039-9140(03)00121-8.
 
22.
Takayasu T., Saito K., Nishigami J., Ohshima T., Nagano T. Toxicological analysis of drugs and poisons in formalin-fixed organ tissues. 2. Volatile substances. Int. J. Legal Med. 1994; 107(1): 7–12, doi: 10.1007/BF01247267.
 
23.
Coe J.I. Comparative postmortem chemistries of vitreous humor before and after embalming. J. Forensic Sci. 1976; 21(3): 583–586.
 
24.
Scott W., Root R., Sanborn B. The use of vitreous humor for determination of ethyl alcohol in previous embalmed bodies. J. Forensic Sci. 1974; 19(4): 913–915.
 
25.
Tomsia M., Nowicka J., Skowronek R., Woś M., Wójcik J., Droździok K. et al. A comparative study of ethanol concentration in costal cartilage in relation to blood and urine. Processes 2020; 8(12): 1637, doi: 10.3390/pr8121637.
 
eISSN:1734-025X
Journals System - logo
Scroll to top