The influence of fluid restriction on the patient’s water distribution during video-assisted thoracoscopy (VATS) – A preliminary report
 
More details
Hide details
1
Department of Anaesthesiology and Critical Care, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
 
2
University Clinical Center named after Prof. K. Gibiński of the Medical University of Silesia in Katowice, Poland
 
3
Medica Co., Ltd. (Upper Silesian School of Ultrasonography), Chorzów, Poland
 
4
Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Poland
 
 
Corresponding author
Piotr Wichary   

Zakład Badania i Leczenia Bólu, Wydział Nauk Medycznych w Zabrzu ŚUM, ul. 3 Maja 13, 41-800 Zabrze
 
 
Ann. Acad. Med. Siles. 2025;79:276-281
 
KEYWORDS
TOPICS
ABSTRACT
Introduction:
The principles of optimal perioperative fluid therapy in thoracic surgery have been discussed for many years due to its possible role in pulmonary complications. The aim of the study was to perform a preoperative analysis of bioelectrical impedance (BIA) in patients undergoing video-assisted thoracoscopic surgery (VATS) using one-lung ventilation.

Material and methods:
The study comprised 14 adult patients (11 men and 3 women). BIA was applied to measure total body water (TBW), intracellular body water (ICW), and extracellular body water (ECW) prior to the operation and after the patient’s return to the ward. The patients were grouped according to the total water received during the surgery per kilogram of body weight. The accepted cut-off value for restrictive fluid therapy was < 6.5 ml/kg of all fluids received during surgery.

Results:
A small elevation of TBW was observed after the surgeries as compared to preoperational values. In restrictive fluid therapy, the values raised from 46.55% (95% CI: 41.58; 51.58) to 46.92% (95% CI: 42.92; 51.32), while for liberal volumes of fluids given during the procedures, the values grew from 37.26% (95% CI: 37.97; 41.56) to 37.63% (95% CI: 33.82; 41.43). However, the differences were not statistically significant (p = 0.983) and fluctuations in the intracellular and extracellular water were unremarkable in both groups.

Conclusions:
Restrictive fluid therapy does not affect intracellular and extracellular water distribution in patients undergoing VATS.
REFERENCES (28)
1.
Licker M., de Perrot M., Spiliopoulos A., Robert J., Diaper J., Chevalley C. et al. Risk factors for acute lung injury after thoracic surgery for lung cancer. Anesth. Analg. 2003; 97(6): 1558–1565, doi: 10.1213/01.ANE.0000087799.85495.8A.
 
2.
Alam N., Park B.J., Wilton A., Seshan V.E., Bains M.S., Downey R.J. et al. Incidence and risk factors for lung injury after lung cancer resection. Ann. Thorac. Surg. 2007; 84(4): 1085–1091, doi: 10.1016/j.athoracsur.2007.05.053.
 
3.
Mizuno Y., Iwata H., Shirahashi K., Takamochi K., Oh S., Suzuki K. et al. The importance of intraoperative fluid balance for the prevention of postoperative acute exacerbation of idiopathic pulmonary fibrosis after pulmonary resection for primary lung cancer. Eur. J. Cardiothorac. Surg. 2012; 41(6): e161–e165, doi: 10.1093/ejcts/ezs147.
 
4.
Arslantas M.K., Kara H.V., Tuncer B.B., Yildizeli B., Yuksel M., Bostanci K. et al. Effect of the amount of intraoperative fluid administration on postoperative pulmonary complications following anatomic lung resections. J. Thorac. Cardiovasc. Surg. 2015; 149(1): 314–320, 321.e1, doi: 10.1016/j.jtcvs.2014.08.071.
 
5.
Matot I., Dery E., Bulgov Y., Cohen B., Paz J., Nesher N. Fluid management during video-assisted thoracoscopic surgery for lung resection: a randomized, controlled trial of effects on urinary output and postoperative renal function. J. Thorac. Cardiovasc. Surg. 2013; 146(2): 461–466, doi: 10.1016/j.jtcvs.2013.02.015.
 
6.
Agostini P., Cieslik H., Rathinam S., Bishay E., Kalkat M.S., Rajesh P.B. et al. Postoperative pulmonary complications following thoracic surgery: are there any modifiable risk factors? Thorax 2010; 65(9): 815–818, doi: 10.1136/thx.2009.123083.
 
7.
Lugg S.T., Agostini P.J., Tikka T., Kerr A., Adams K., Bishay E. et al. Long-term impact of developing a postoperative pulmonary complication after lung surgery. Thorax 2016; 71(2): 171–176, doi: 10.1136/thoraxjnl-2015-207697.
 
8.
Koksal G.M., Erbabacan E., Esquinas A.M. Effects of intraopera-tive fluid management on postoperative outcome: What is our limit in fluid therapy? Ann. Surg. 2018; 268(6): e43, doi: 10.1097/SLA.0000000000002490.
 
9.
Oya S., Yamashita H., Iwata R., Kawasaki K., Tanabe A., Yagi K. et al. Perioperative fluid dynamics evaluated by bioelectrical impedance analysis predict infectious surgical complications after esophagectomy. BMC Surg. 2019; 19(1): 184, doi: 10.1186/s12893-019-0652-z.
 
10.
Chong J.U., Nam S., Kim H.J., Lee R., Choi Y., Lee J.G. et al. Exploration of fluid dynamics in perioperative patients using bioimpedance analysis. J. Gastrointest. Surg. 2016; 20(5): 1020–1027, doi: 10.1007/s11605-015-3063-1.
 
11.
Khalil S.F., Mohktar M.S., Ibrahim F. The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors (Basel) 2014; 14(6): 10895–10928, doi: 10.3390/s140610895.
 
12.
Lee Y.H., Lee J.D., Kang D.R., Hong J., Lee J.M. Bioelectrical impedance analysis values as markers to predict severity in critically ill patients. J. Crit. Care 2017; 40: 103–107, doi: 10.1016/j.jcrc.2017.03.013.
 
13.
Ward L.C. Bioelectrical impedance analysis for body composition assessment: reflections on accuracy, clinical utility, and standardisation. Eur. J. Clin. Nutr. 2019; 73(2): 194–199, doi: 10.1038/s41430-018-0335-3.
 
14.
Chung Y.J., Kim E.Y. Usefulness of bioelectrical impedance analysis and ECW ratio as a guidance for fluid management in critically ill patients after operation. Sci. Rep. 2021; 11(1): 12168, doi: 10.1038/s41598-021-91819-7.
 
15.
Wu Y., Yang R., Xu J., Rusidanmu A., Zhang X., Hu J. Effects of intraoperative fluid management on postoperative outcomes after lobectomy. Ann. Thorac. Surg. 2019; 107(6): 1663–1669, doi: 10.1016/j.athoracsur.2018.12.013.
 
16.
Mahmood A., Gosling P., Vohra R.K. Randomized clinical trial comparing the effects on renal function of hydroxyethyl starch or gelatine during aortic aneurysm surgery. Br. J. Surg. 2007; 94(4): 427–433, doi: 10.1002/bjs.5726.
 
17.
Godet G., Lehot J.J., Janvier G., Steib A., De Castro V., Coriat P. Safety of HES 130/0.4 (Voluven(R)) in patients with preoperative renal dysfunction undergoing abdominal aortic surgery: a prospective, randomized, controlled, parallel-group multicentre trial. Eur. J. Anaesthesiol. 2008; 25(12): 986–994, doi: 10.1017/S026502150800447X.
 
18.
Huang C.C., Kao K.C., Hsu K.H., Ko H.W., Li L.F., Hsieh M.J. et al. Effects of hydroxyethyl starch resuscitation on extravascular lung water and pulmonary permeability in sepsis-related acute respiratory distress syndrome. Crit. Care Med. 2009; 37(6): 1948–1955, doi: 10.1097/CCM.0b013e3181a00268.
 
19.
Wiedermann C.J., Dunzendorfer S., Gaioni L.U., Zaraca F., Joannidis M. Hyperoncotic colloids and acute kidney injury: a meta-analysis of randomized trials. Crit. Care 2010; 14(5): R191, doi: 10.1186/cc9308.
 
20.
Schortgen F., Lacherade J.C., Bruneel F., Cattaneo I., Hemery F., Lemaire F. et al. Effects of hydroxyethylstarch and gelatin on renal function in severe sepsis: a multicentre randomised study. Lancet 2001; 357(9260): 911–916, doi: 10.1016/S0140-6736(00)04211-2.
 
21.
Corcoran T., Rhodes J.E., Clarke S., Myles P.S., Ho K.M. Perioperative fluid management strategies in major surgery: a stratified meta-analysis. Anesth. Analg. 2012; 114(3): 640–651, doi: 10.1213/ANE.0b013e318240d6eb.
 
22.
Giglio M., Dalfino L., Puntillo F., Rubino G., Marucci M., Brienza N. Haemodynamic goaldirected therapy in cardiac and vascular surgery: A systematic review and meta-analysis. Interact. Cardiovasc. Thorac. Surg. 2012; 15(5): 878–887, doi: 10.1093/icvts/ivs323.
 
23.
Challand C., Struthers R., Sneyd J.R., Erasmus P.D., Mellor N., Hosie K.B. et al. Randomized controlled trial of intraoperative goaldirected fluid therapy in aerobically fit and unfit patients having major colorectal surgery. Br. J. Anaesth. 2012; 108(1): 53–62, doi: 10.1093/bja/aer273.
 
24.
Bisgaard J., Gilsaa T., Rønholm E., Toft P. Optimising stroke volume and oxygen delivery in abdominal aortic surgery: a randomised controlled trial. Acta Anaesthesiol. Scand. 2013; 57(2): 178–188, doi: 10.1111/j.1399-6576.2012.02756.x.
 
25.
Budacan A.M., Naidu B. Fluid management in the thoracic surgical patient: where is the balance? J. Thorac. Dis. 2019; 11(6): 2205–2207, doi: 10.21037/jtd.2019.05.75.
 
26.
Lee E.H. Optimal fluid therapy for thoracic surgery. J. Thorac. Dis. 2019; 11(5): 1753–1755, doi: 10.21037/jtd.2019.05.15.
 
27.
Cagini L., Capozzi R., Tassi V., Savignani C., Quintaliani G., Reboldi G. et al. Fluid and electrolyte balance after major thoracic surgery by bioimpedance and endocrine evaluation. Eur. J. Cardiothorac. Surg. 2011; 40(2): e71–e76, doi: 10.1016/j.ejcts.2011.03.030.
 
28.
Messina G., Natale G., Fiorelli A., Puca M.A., Moscatelli F., Monda V. et al. Functional effect of adiponectin and body composition assessment in lung cancer subjects after video-assisted thoracoscopic surgery (VATS) lobectomy. Thorac. Cancer 2025; 16(2): e15260, doi: 10.1111/1759-7714.15260.
 
eISSN:1734-025X
Journals System - logo
Scroll to top