ARDRA studies of the ribosomal RNA operon within the Desulfovibrio desulfuricans strains.
 
More details
Hide details
1
Department of Biopharmacy, Medical University of Silesia, Poland
 
2
Department of Biotechnology and Genetic Engineering, Medical University of Silesia, Poland
 
 
Corresponding author
Joanna Szczerba   

Department of Biopharmacy Medical University of Silesia 41-200 Sosnowiec, Poland Narcyzów 1St. tel.: (+48 32) 364 10 61
 
 
Ann. Acad. Med. Siles. 2009;63:7-19
 
KEYWORDS
ABSTRACT
BACKGROUND:
Desulfovibrio desulfuricans belong to the heterogeneous group of anaerobic, sulphate-reducing bacteria (SRB), widely distributed in various environments. As a result of dissimilatory sulphate reduction, they release hydrogen sulphide (H2S), which has a cytotoxic effect in human and animal organisms. It has been shown by many authors, that Desulfovibrio was the genus predominating in patients with ulcerative colitis. Some of these bacteria can act as opportunistic pathogens associated with primary bacteremia and abdominal infections such as abscesses.

MATERIAL AND METHODS:
Fifteen (soil and intestinal) strains of Desulfovibrio desulfuricans species were cultured in modified sulphate-free Postgate’s liquid medium with pyruvate for 10 days. Bacterial DNA was extracted by using a commercially available kit and DNA was used as a template for amplification of the full-length 16S, 23S rDNA and the intergenic spacer region. Digested with restriction enzymes (AluI, EcoRI, HaeIII, HindIII, HinfI, MboI and PstI) PCR amplicons were resolved by electrophoresis on 2% agarose gels.

RESULTS:
Digestion of rrn operon of Desulfovibrio desulfuricans by seven restriction enzymes allowed to obtain the characteristic restriction profiles for all 15 investigated strains. The results allow us to suggest three of used enzymes: HinfI, AluI and HaeIII as a useful for confirmation of the similarity within of rrn operon of isolates belonging to this species. onsidering the restriction profiles received with HindIII, and EcoR1 enzymes it seems that their application is insufficient, but PstI enzyme is not acceptable for the analysis of rrn operon of these bacteria.

CONCLUSIONS:
The obtained data have shown that ARDRA can be used for establishment of phylogenetic relations among isolates of Desulfovibrio desulfuricans species, providing the appropriate restriction enzyme is used.

 
REFERENCES (40)
1.
Boyle A., Phelps C.D., Young L.Y. Isolation from estaurine sediments ofa Desulfovibrio strain which can grow on lactete coupled to the reductive dehalogenation of 2,4,6-tribromophenol. Appl. Environ. Microbiol. 1999; 65: 1133-1140.
 
2.
Haouari O., Fardeau M.L., Casalot L., Tholozan J.L., Hamdi M., Ollivier B. Isolation of sulfate-reducing bacteria from Tunisian marine sediments and description of Desulfovibrio bizertensis sp. nov. Int. J. Syst. Evol. Microbiol. 2006; 56: 2909-2913.
 
3.
Perez-Jimenez J.R., Kerkhof L.J. Phylogeography of sulfate-reducing bacteria among disturbed sediments disclosed by analysis of the dissimilatory sulfite reductase genes (dsrAB). Appl. Environ. Microbiol. 2005; 71: 1004-1011.
 
4.
Webster G., Watt L.C., Rinna J., Fry J.C., Evershed R.P., Parkes R.J., Weightman A.J. A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries. Environ. Microbiol. 2006; 8: 1575-1589.
 
5.
Deplancke B., Hristova K. R., Oakley H.A., McCracken V. J., Aminov R., Mackie R. I., Gaskons H. R. Molecular ecological analysis of the succesio and diversity of sulfate – reducing bacteria in the mouse gastrointestinal tract. Appl. Environ. Microbiol. 2000; 66: 2166 – 2174.
 
6.
Droge S., Limper U., Emtiazi F., Schonig I., Pavlus N., Drzyzga O., Fischer U., Konig H. In vitro and in vivo sulfate reduction in the contents of the termite Mastotermes darwiniensis and the rose-chafer Pachnoda marginata. J. Gen. Appl. Microbiol. 2005; 51: 57-64.
 
7.
Dzierżewicz Z., Cwalina B., Gawlik B., Wilczok T., Gonciarz Z. Isolation and evaluation of susceptibility to sulphasalazine of Desulfovibrio desulfuricans strains from the human digestive tract. Acta Microbiol. Pol. 1997; 46: 175 – 187.
 
8.
Fox J.G., Dewhirst F.E., Fraser G.J., Paster B.J., Shames B., Murphy J.C. Intracellular Campylobacter – like organism from ferrets and hamsters with proliferative bowel disease is a Desulfovibrio sp.. J. Clin. Microbiol. 1994; 32: 1229 – 1237.
 
9.
Gibson G.R., Cummings J.H., McFarlane G.T. Growth and activities of sulphate-reducing bacteria in gut contents of healthy subjects and patients with ulcerative colitis. FEMS Microbiol. Ecol. 1991; 86: 103-112.
 
10.
Inness V.L., McCartney A.L., Khoo C., Gross K.L., Gibson G.R. Molecular characterization of the gut microflora of healthy and inflammatory bowel disease cats using fluorescence in situ hybridisation with special reference to Desulfovibrio spp.: J. Anim. Physiol. Anim. Nutr. 2007; 91: 48-53.
 
11.
Gibson G.R., McFarlane G.T., Cummings J. H. Occurrence of sulphate-reducing bacteria in human faeces and the relationship of dissimilatory sulphate reduction to methanogenesis in the large gut. J. Appl. Bacteriol. 1988; 65: 103-111.
 
12.
Head K.A., Jurenka J.S. Inflammatory bowel disease. Part 1: ulcerative colitis - pathophysiology and conventional and alternative treatment options. Altern. Med. Rev. 2003; 8: 247-283.
 
13.
Loubinoux J., Bronowicki J.P., Pereira I. A. C., Mougenel J.L., Le Faou A.E. Sulfate-reducing bacteria in human feces and their association with inflammatory bowel diseases. FEMS Microbiol. Ecol. 2002; 40: 107-112.
 
14.
Pitcher M.C.L., Cummings J.H. Hydrogen sulphide: a bacterial toxin in ulcerative colitis? Gut. 1996; 39: 1-4.
 
15.
Baron E.J., Bennion R., Thompson J., Strong C., Summanen P., McTeague M., Finegold S.M. A microbiological comparison between acute and complicated appendicitis. Clin. Infect. Dis. 1992; 14: 227-231.
 
16.
La Scola B., Raoult D. Third human isolate of a Desulfovibrio sp. identical to the provisionally named Desulfovibrio fairfieldensis. J. Clin. Microbiol. 1999; 37: 3076-3077.
 
17.
Lozniewski A., Maurer P., Schuhmacher H., Carlier J.P., Mory F. First isolation of Desulfovibrio sp. as part of a polymicrobial infection from a brain abscess. Eur. J. Clin. Microbiol. Infect. Dis. 1999; 18: 602-603.
 
18.
McDougall R., Robson J., Paterson D., Tee W. Bacteremia caused by a recently described novel Desulfovibrio species. J. Clin. Microbiol. 1997; 35: 1805-1808.
 
19.
Porschen R.K., Chan P. Anaerobic vibriolike organisms cultured from blood: Desulfovibrio desulfuricans and Succinivibrio species. J. Clin. Microbiol. 1977; 5: 444-447.
 
20.
Schoenborn L., Abdollahi H., Tee W., Dyall-Smith M., Janssen P.H. A member of the delta subgroup of proteobacteria from a pyogenic liver abscess is a typical sulfate reducer of the genus Desulfovibrio. J. Clin. Microbiol. 2001; 39: 787-790.
 
21.
Tee W., Dyall-Smith M., Woods W., Eisen D. Probable new species of Desulfovibrio isolated from a pyogenic liver abscess. J. Clin. Microbiol. 1996; 34: 1760-1764.
 
22.
Loubinoux J., Mory F., Pereira I.A.C., Le Faou A.E. Bacteremia caused by a strain of Desulfovibrio related to the provisionally named Desulfovibrio fairfieldensis. J. Clin. Microbiol. 2000; 38: 931-934.
 
23.
Loubinoux J., Jaulhac B., Piemont Y., Monteil H., Le Faou A.E. Isolation of sulfate-reducing bacteria from human thoracoabdominal pus. J. Clin. Microbiol. 2003; 41: 1304-1306.
 
24.
Shukla S.K., Reed K.D. Desulfovibrio desulfuricans bacteremia in a dog. J. Clin. Microbiol. 2000; 38: 1701-1702.
 
25.
Olivares-Fuster O., Shoemaker C.A., Klesius P.H., Arias C.R. Molecular typing of isolates of the fish pathogen, Flavobacterium columnare, by single-strand conformation polymorphism analysis. FEMS Microbiol. Lett. 2007; 269: 63-69.
 
26.
Schlegel L., Grimont F., Grimont P.A.D., Bouvet A. Identification of major streptococcal species rrn-amplified ribosomal DNA restriction analysis. J. Clin. Microbiol. 2003; 41: 657-666.
 
27.
Spergser J., Rosengarten R. Identification and differentiation of canine Mycoplasma isolates by 16S-23S rDNA PCR-RFLP. Vet. Microbiol. 2007; available on line.
 
28.
Mendoza-Espinoza A., Koga Y., Zavaleta A.I. Amplified 16S ribosomal DNA restriction analysis for identification of Avibacterium paragallinarum. Avian Dis. 2008; 52: 54-58.
 
29.
Shkoporov A.N., Khokhlova E.V., Kulagina E.V., Smeianov V.V., Kafarskaia L.I., Efimov B.A. Application of several molecular techniques to study numerically predominant Bifidobacterium spp. and Bacteroidales order strains in the feces of healthy children. Biosci. Biotechnol. Biochem. 2008;.72: 742-748.
 
30.
Najjari A., Ouzari H., Boudabous A., Zagorec M. Method for reliable isolation of Lactobacillus sakei strains originating from Tunisian seafood and meat products. Int. J. Food Microbiol. 2008; 121: 342-351.
 
31.
Postgate J.R. The sulphate-reducing bacteria. 2nd ed. Cambridge United Kingdom: Cambridge University Press. 1984.
 
32.
Garcia-Arata M.I., Gerner-Smidt P., Baquero F., Ibrahim A. PCR-amplified 16S and 23S rDNA restriction analysis for the identification of Acinetobacter strains at the DNA group level. Res. Microbiol. 1997; 148: 777-784.
 
33.
Dzierżewicz Z., Szczerba J., Węglarz L., Komarska-Szostak A., Wilczok T. Evaluation of arbitrarily primed PCR for typing of Desulfovibrio desulfuricans strains. Microbiol. Res. 2003; 158: 1-6.
 
34.
Dzierżewicz Z., Szczerba J., Węglarz L., Świątkowska L., Jasińska D., Wilczok T. Intraspecies variability of Desulfovibrio desulfuricans strains determined by the genetic profiles. FEMS Microbiol. Lett. 2003; 219: 69-74.
 
35.
Fujita S., Senda Y., Iwagami T., Hashimoto T. Rapid identification of staphylococcal strains from positive-testing blood culture bottles by internal transcribed spacer PCR followed by microchip gel electrophoresis. J. Clin. Microbiol. 2005; 43: 1149-1157.
 
36.
Rodas A.M., Ferrer S., Pardo I. 16S-ARDRA, a tool for identification of lactic acid bacteria isolated from grape must and wine. Syst. Appl. Microbiol. 2003; 26: 412-422.
 
37.
Vaneechoutte M., Riegel P., de Briel D., Monteil H., Verschraegen G., De Rouck A., Claeys G. Evaluation of the applicability of amplified rDNA-restriction analysis (ARDRA) to identification of species of the genus Corynebacterium. Res. Microbiol. 1995; 146: 633-641.
 
38.
De Baere T., Mendonca R., Claeys G., Verschraegen G., Mijs W., Verhelst R., Rottiers S., Simaey L., Ganck C.D., Vaneechoutte B.M.C. Evaluation of amplified rDNA restriction analysis (ARDRA) for the identification of cultured mycobacteria in a diagnostic laboratory. Microbiol. 2002; 2: 4-15.
 
39.
Katoch V.M., Parashar D., Chauhan D.S., Singh D., Sharma V.D., Ghosh S. Rapid identification of mycobacteria by gene amplification restriction analysis technique targeting 16S-23S ribosomal RNA internal transcribed spacer & flanking region. Indian J. Med. Res. 2007; 125: 155-162.
 
40.
Kur J., Lewandowski K., Krawczyk B., Samet A. Phylogeny of Acinetobacter genus. Adv. Microb. (in polish). 2000; 39: 291 – 301.
 
eISSN:1734-025X
Journals System - logo
Scroll to top