Assessment of antiproliferative, cytotoxic and proapoptotic properties of selected flavonoids in relation to liver cancers – in vitro studies
More details
Hide details
1
Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Poland
Corresponding author
Agata Kabała-Dzik
Katedra i Zakład Patologii, Wydział Nauk Farmaceutycznych w Sosnowcu, Śląski Uniwersytet
Medyczny w Katowicach, ul. Ostrogórska 30, 41-200 Sosnowiec, Polska
Ann. Acad. Med. Siles. 2020;74:181-190
KEYWORDS
TOPICS
ABSTRACT
Introduction:
Flavonoids belong to phytotherapeutics with a wide spectrum of pharmacological activity. It has been proven that flavonoids possess properties that can inhibit the development of cancer by inducing cells into the programmed cell death process. The aim of the work was to demonstrate the apoptotic, antiproliferative and cytotoxic properties of selected flavonoids.
Material and methods:
The test material was the human primary hepatocellular carcinoma SK Hep-1 cell line.
The tested compounds were assessed for cytotoxicity with the MTT assay. The next step was to evaluate the level of protein expression from the Bcl-2 family using the human Bcl-2 ELISA test.
Results:
The compound with the strongest cytotoxic properties confirmed by the MTT test is chrysin, the IC50 value of which was 316.67 μM/L. In the case of all the tested compounds, apoptotic processes were confirmed by the human Bcl-2 ELISA test. The highest level of Bcl-2 protein expression occurred after 48 hours after the administration of chrysin, hesperidin, naringin and kaempferol.
Conclusions:
On the basis of the obtained research results, it can be concluded that the studied flavonoids (chrysin, hesperidin, naringin, kaempferol) exhibit cytotoxic, proapoptotic and antiproliferative properties in relation to SK Hep-1 hepatoma cells.
FUNDING
This research was supported by Medical University of Silesia in Katowice, project no. KNW-1-042/N/6/O.
REFERENCES (35)
2.
Srivatanakul P., Sriplung H., Deerasamee S. Epidemiology of liver cancer: an overview. Asian Pac. J. Cancer Prev. 2004; 5(2): 118–125.
3.
Wojciechowska U., Olasek P., Czauderna K., Didkowska J. Nowotwory złośliwe w Polsce w 2014 roku. Krajowy Rejestr Nowotworów Zakład Epidemiologii i Prewencji Nowotworów. Warszawa 2016.
http://onkologia.org.pl/raport... [dostęp: 02.10.2017].
4.
McGlynn K., London T. The Global Epidemiology of Hepatocellular Carcinoma, Present and Future. Clin. Liver Dis. 2011; 15(2): 223–243, vii-x, doi: 10.1016/j.cld.2011.03.006.
5.
Peck-Radosavljevic M. Drug therapy for advanced-stage liver cancer. Liver Cancer 2014; 3(2): 125–131, doi: 10.1159/000343868.
6.
Rajesh E., Sankari L., Malathi L., Krupaa J. Naturally occurring products in cancer therapy. J. Pharm. Bioallied. Sci. 2015; 7(Suppl 1): S181–S183, doi: 10.4103/0975-7406.155895.
7.
Chahar M., Sharma N., Dobhal M., Joshi Y. Flavonoids: A versatile source of anticancer drugs. Pharmacogn. Rev. 2011; 5(9): 1–12, doi: 10.4103/0973-7847.79093.
8.
Das A., Banik N.L., Ray S.K. Flavonoids activated caspases for apoptosis in human glioblastoma T98G and U87MG cells but not in human normal astrocytes. Cancer 2010; 116 (1): 164–176, doi: 10.1002/cncr.24699.
9.
Vukovic N.L., Obradovic A.D., Vukic M.D., Jovanovic D., Djurdjevic P.M. Cytotoxic, proapoptotic and antioxidative potential of flavonoids isolated from propolis against colon (HCT-116) and breast (MDA-MB-231) cancer cell lines. Food Res. Int. 2018; 106: 71–80, doi: 10.1016/j.foodres.2017.12.056.
10.
Lirdprapamongkol K., Sakurai H., Abdelhamed S., Yokoyama S., Maruyama T., Athikomkulchai S., Viriyaroj A., Awale S., Yagita H., Ruchirawat S., Svasti J., Saiki I. A flavonoid chrysin suppresses hypoxic survival and metastatic growth of mouse breast cancer cells. Oncol. Rep. 2013; 30(5): 2357–2364, doi: 10.3892/or.2013.2667.
11.
Kasala E.R., Bodduluru L.N., Madana R.M., Gogoi R., Barua C.C. Chemopreventive and therapeutic potential of chrysin in cancer: mechanistic perspectives. Toxicol. Lett. 2015; 233(2): 214–225, doi: 10.1016/j.toxlet.2015.01.008.
12.
Lee C.J., Wilson L., Jordan M.A., Nguyen V., Tang J., Smiyun G. Hesperidin suppressed proliferations of both human breast cancer and androgen-dependent prostate cancer cells. Phytother. Res. 2010; 24; Suppl 1: 15–19, doi: 10.1002/ptr.2856.
13.
Ahmadi A., Shadboorestan A. Oxidative stress and cancer; the role of hesperidin, a citrus natural bioflavonoid, as a cancer chemoprotective agent. Nutr. Cancer. 2016; 68(1): 29–39, doi: 10.1080/01635581.2015.1078822.
14.
Khoo B.Y., Chua S.L., Balaram P. Apoptotic Effects of Chrysin in Human Cancer Cell Lines. Int. J. Mol. Sci. 2010; 11(5): 2188–2199, doi: 10.3390/ijms11052188.
15.
Zhao J., Li Y., Gao J., De Y. Hesperidin inhibits ovarian cancer cell viability through endoplasmic reticulum stress signaling pathways. Oncol. Lett. 2017; 14: 5569–5574, doi: 10.3892/ol.2017.6873.
16.
Alam A.M., Subhan N.M., Rahman M., Uddin S.J., Reza H.M., Sarker S.D. Effect of Citrus Flavonoids, Naringin and Naringenin, on Metabolic Syndrome and Their Mechanisms of Action. Adv. Nutr. 2014; 5(4): 404–417, doi: 10.3945/an.113.005603.
17.
Chen A.Y., Chen Y.C. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem. 2013; 138(4): 2099–2107, doi: 10.1016/j.foodchem.2012.11.139.
18.
Geybels M.S., Verhage B.A., Arts I.C., van Schooten F.J., Goldbohm R.A., van den Brandt P.A. Dietary flavonoid intake, black tea consumption, and risk of overall and advanced stage prostate cancer. Am. J. Epidemiol. 2013; 177(12): 1388–1398, doi: 10.1093/aje/kws419.
19.
Anand P., Kunnumakkara A.B., Sundaram C., Harikumar K.B., Tharakan S.T., Lai O.S., Sung B., Aggarwal B.B. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res. 2008; 25(9): 2097–2116, doi: 10.1007/s11095-008-9661-9.
22.
Riboli E., Norat T. Epidemiological evidence of the protective effect of fruit and vegetables on cancer risk. Am. J. Clin. Nutr. 2003; 78(3 Suppl): 559S–569S, doi: 10.1093/ajcn/78.3.559S.
23.
Epping-Jordan J.E., Galea G., Tukuitonga C., Beaglehole R. Preventing chronic diseases: Taking stepwise action. Lancet 2005; 366(9497): 1667–1671, doi: 10.1016/S0140-6736(05)67342-4.
24.
Blumberg B.S. Primary and secondary prevention of liver cancer caused by HBV. Front Biosci. (Schol Ed). 2010; 2: 756–763, doi: 10.2741/s98.
25.
Volk M.L., Marrero J.A. Early detection of liver cancer: diagnosis and management. Curr. Gastroenterol. Rep. 2008; 10(1): 60–66, doi: 10.1007/s11894-008-0010-2.
26.
Bialecki E.S., Di Bisceglie A.M. Diagnosis of hepatocellular carcinoma. HPB (Oxford) 2005; 7(1): 26–34, doi: 10.1080/13651820410024049.
27.
Kudo M. Surveillance, diagnosis, treatment, and outcome of liver cancer in Japan. Liver Cancer. 2015; 4(1): 39–50, doi: 10.1159/000367727.
28.
Liang R.R., Zhang S., Qi J.A., Wang Z.D., Li J., Liu P.J., Huang C., Le X.F., Yang J., Li Z.F. Preferential inhibition of hepatocellular carcinoma by the flavonoid baicalein through blocking MEK-ERK signaling. Int. J. Oncol. 2012; 41: 969–978, doi: 10.3892/ijo.2012.1510.
29.
Kim B.R., Jeon Y.K., Nam M.J. A mechanism of apigenin-induced apoptosis is potentially related to anti-angiogenesis and anti-migration in human hepatocellular carcinoma cells. Food Chem. Toxicol. 2011; 49(7): 1626–1632, doi: 10.1016/j.fct.2011.04.015.
30.
Zhang H.T., Luo H., Wu J., Lan L.B., Fan D.H., Zhu K.D., Chen X.Y., Wen M., Liu H.M. Galangin induces apoptosis of hepatocellular carcinoma cells via the mitochondrial pathway. World J. Gastroenterol. 2010; 16(27): 3377–3384, doi: 10.3748/wjg.v16.i27.3377.
31.
Fang R., Houghton P.J., Hylands P.J. Cytotoxic effects of compounds from Iris tectorum on human cancer cell lines. J. Ethnopharmacol. 2008; 118(2): 257–263, doi: 10.1016/j.jep.2008.04.006.
32.
Kim I., Xu W., Reed J.C. Cell death and endoplasmic reticulum stress: Disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov. 2008; 7(12): 1013–1030, doi: 10.1038/nrd2755.
33.
Deng X., Zhao X., Lan Z., Jiang J., Yin W., Chen L. Anti-tumor effects of flavonoids from the ethnic medicine Docynia delavayi (Franch.) Schneid. and its possible mechanism. J. Med. Food. 2014; 17(7): 787–794, doi: 10.1089/jmf.2013.2886.
34.
Banjerdpongchai R., Wudtiwai B., Khaw-On P., Rachakhom W., Duangnil N., Kongtawelert P. Hesperidin from Citrus seed induces human hepatocellular carcinoma HepG2 cell apoptosis via both mitochondrial and death receptor pathways. Tumour Biol. 2016; 37(1): 227–237, doi: 10.1007/s13277-015-3774-7.
35.
Shi X., Liu D., Zhang J., Hu P., Shen W., Fan B., Ma Q., Wang X. Extraction and purification of total flavonoids from pine needles of Cedrus deodara contribute to anti-tumor in vitro. BMC Complement Altern. Med. 2016; 16: 245, doi: 10.1186/s12906-016-1249-z.
CITATIONS (1):
1.
Therapeutic role of naringin in cancer: molecular pathways, synergy with other agents, and nanocarrier innovations
Abdulsalam Alhalmi, Saima Amin, Tanya Ralli, Khaled Saeed Ali, Kanchan Kohli
Naunyn-Schmiedeberg's Archives of Pharmacology