Changes in expression of genes related to caspases and BCL-2 family in RPTEC treated with amphotericin B and its modified forms
More details
Hide details
Katedra Biologii Molekularnej, Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej w Sosnowcu,Śląski Uniwersytet Medyczny w Katowicach
Zakład Biologii Komórki, Instytut Biologii i Biochemii, Wydział Biologii i Biotechnologii, Uniwersytet Marii Curie-Skłodowskiej w Lublinie
Joanna Magdalena Gola   

Katedra i Zakład Biologii Molekularnej, Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej w Sosnowcu, Śląski Uniwersytet Medyczny w Katowicach, ul. Jedności 8, 41-200 Sosnowiec
Ann. Acad. Med. Siles. 2018;72:62–68
The main limitation of the use of amphotericin B (AmB) – effective in the treatment of systemic fungal infections – is its high toxicity to human cells. The mechanism of AmB toxicity is not clear. Caspase-related and BCL-2 proteins participate in the regulation of apoptosis. Thus, they may be involved in drug toxicity. In this study we evaluated the influence of AmB on the transcriptional activity of genes related to caspases and the BCL-2 family. We also tested the influence of modified forms of AmB: AmB-Cu2+ (the complex with copper(II) ions) and the AmB-ox (oxidized form).

Material and methods:
Human RPTECs (Renal Proximal Tubule Epithelial Cells) were treated with AmB, AmB-Cu2+ and AmB-ox. Total RNA was extracted using the phenol-chloroform method. The expression profiles of genes related to caspase activity and BCL-2 were determined using oligonucleotide microarrays (HG-U133A 2.0, Affymetrix). Analysis included 67 ID related to caspases and 32 ID associated with BCL-2, according to the Affymetrix database.

The analysis revealed upregulation of the BCL-2 and BCL2L1genes in the cells treated with AmB-Cu2+, in comparison to the control. In both the AmB and AmB-Cu2+ -treated cells, differentiating genes were associated with inflammation and mitophagy activated by intrinsic signals. In the cells treated with AmB-ox, the BCL-2 genes were downregulated.

The results suggest that AmB and AmB-Cu2+ activate genes involved in the regulation of inflam-mation and autophagy induced by intrinsic signals, but overexpression of BCL-2 and BCL2L1 may protect AmB-Cu2+-treated cells from death. In the cells treated with AmB-ox extrinsic signals prevail, indicating the distinct molecular mechanism of its cytotoxicity.

Green D.R., Llambi F. Cell Death Signaling. Cold. Spring. Harb. Per-spect. Biol. 2015; 7(12): pii: a006080. doi: 10.1101/cshperspect.a006080.
Li J., Yuan J. Caspases in apoptosis and beyond. Oncogene 2008; 27(48): 6194–6206.
MacKenzie S.H., Schipper J.L., Clark A.C. The potential for caspases in drug Discovery. Curr. Opin. Drug. Discov. Devel. 2010; 13(5): 568–576.
Lavrik I.N., Golks A., Krammer P.H. Caspases: pharmacological manipulationof cell death. J. Clin. Invest. 2005; 115(10): 2665–2672.
Wallach D., Kang T.B., Dillon C.P., Green D.R. Programmed necrosis in inflammation: Toward identification of the effector molecules. Science 2016; 352(6281): aaf2154. doi: 10.1126/science.aaf2154.
Hata A.N., Engelman J.A., Faber A.C. The BCL2 Family: Key Mediators of the Apoptotic Response to Targeted Anticancer Therapeutics. Cancer Discov. 2015; 5(5): 475–487. doi: 10.1158/2159-8290.CD-15-0011.
Anilkumar U., Prehn J.H. Anti-apoptotic BCL-2 family proteins in acute neural injury. Front Cell Neurosci. 2014; 8: 281. doi: 10.3389/fncel.2014.00281. eCollection 2014.
Azad M.A., Akter J., Rogers K.L., Nation R.L., Velkov T., Li J. Major pathways of polymyxin-induced apoptosis in rat kidney proximal tubular cells. Antimicrob. Agents Chemother. 2015; 59(4): 2136–2143. doi: 10.1128/AAC.04869-14.
Dai C., Li J., Tang S., Li J., Xiao X. Colistin-induced nephrotoxicity in mice involves the mitochondrial, death receptor, and endoplasmic reticulum pathways. Antimicrob. Agents Chemother. 2014; 58(7): 4075–4085. doi: 10.1128/AAC.00070-14.
Witoszyńska T., Kulik M., Buszman E., Trzcionka J. Amphotericin B binding to pigmented microscopic fungi Cladosporium cladosporioides. Ann. Acad. Med. Siles. 2012; 66(2): 34–38.
Gola J., Skubis A., Sikora B., Kruszniewska-Rajs C., Adamska J., Mazurek U., Strzałka-Mrozik B., Czernel G., Gagoś M. Expression profiles of genes related to melatonin and oxidative stress in human renal proximal tubule cells treated with antibiotic amphotericin B and its modified forms. Turk J. Biol. 2015; 39: 856–864.
Chudzik B., Koselski M., Czuryło A., Trębacz K., Gagoś M. A new look at the antibiotic amphotericin B effect on Candida albicans plasma membrane permeability and cell viability functions. Eur. Biophys. J. 2015; 44(1–2): 77–90.
Gagoś M., Czernel G. Oxidized forms of polyene antibiotic amphotericin B. Chem. Phys. Lett. 2014; 598: 5–9.
Gagoś M., Czernel G., Kamiński D.M., Kostro K. Spectroscopic studies of amphotericin B-Cu²+ complexes. Biometals 2011; 24(5): 915–922.
Riley J.S., Malik A., Holohan C., Longley D.B. DED or alive: assembly and regulation of the death effector domain complexes. Cell. Death Dis. 2015; 6: e1866; doi:10.1038/cddis.2015.213.
Hutt K.J. The role of BH3-only proteins in apoptosis within the ovary. Reproduction 2015; 149(2): R81–R89.
Belenky P., Camacho D., Collins J.J. Fungicidal Drugs Induce a Common Oxidative–Damage Cellular Death Pathway. Cell Rep. 2013; 3(2): 350–358. doi:10.1016/j.celrep.2012.12.021.
França F.D., Ferreira A.F., Lara R.C., Rossoni J.V. Jr, Costa D.C., Moraes K.C., Tagliati C.A., Chaves M.M. Alteration in cellular viability, pro-inflammatory cytokines and nitric oxide production in nephrotoxicity generation by Amphotericin B: involvement of PKA pathway signaling. J. Appl. Toxicol. 2014; 34(12): 1285–1292. doi: 10.1002/jat.2927.
Ogura S., Shimosawa T. Oxidative Stress and Organ Damages. Curr. Hypertens. Rep. 2014; 16(8): 452. doi: 10.1007/s11906-014-0452-x.
Chrominski K., Tkacz M. Comparison of High-Level Microarray Analysis Methods in the Context of Result Consistency. PLoS One 2015; 10(6): e0128845. doi:10.1371/journal.pone.0128845.
Noble W.S. How does multiple testing correction work? Nat. Biotechnol. 2009; 27(12): 1135–1137. doi:10.1038/nbt1209-1135.
Scudiero I., Zotti T., Ferravante A., Vessichelli M., Vito P., Stilo R. Alternative splicing of CARMA2/CARD14 transcripts generates protein variants with differential effect on NF-κB activation and endoplasmic reticulum stress-induced cell death. J. Cell. Physiol. 2011; 226(12): 3121–3131. doi: 10.1002/jcp.22667.
Liu K., Shi Y., Guo X., Wang S., Ouyang Y., Hao M., Liu D., Qiao L., Li N., Zheng J., Chen D. CHOP mediates ASPP2-induced autophagic apoptosis in hepatoma cells by releasing Beclin-1 from Bcl-2 and inducing nuclear translocation of Bcl-2. Cell. Death. Dis. 2014; 5: e1323. doi: 10.1038/cd-dis.2014.276.
Chourasia A.H., Boland M.L., Macleod K.F. Mitophagy and cancer. Cancer Metab. 2015; 3: 4. doi: 10.1186/s40170-015-0130-8.
de Zoete M.R., Palm N.W., Zhu S., Flavell R.A. Inflammasomes. Cold. Spring. Harb. Perspect. Biol. 2014; 6(12): a016287. doi: 10.1101/cshper-spect.a016287.
Bian Z., Elner S.G, Khanna H, Murga-Zamalloa C.A., Patil S., Elner V.M. Expression and Functional Roles of Caspase-5 in Inflammatory Responses of Human Retinal Pigment Epithelial Cells. Invest. Ophthalmol. Vis. Sci. 2011; 52(12): 8646–8656. doi: 10.1167/iovs.11-7570.
Afonina I.S., Elton L., Carpentier I., Beyaert R. MALT1-a universal soldier: multiple strategies to ensure NF-κB activation and target gene expression. FEBS J. 2015; 282(17): 3286–3297. doi: 10.1111/febs.13325.
Afonina I.S., Van Nuffel E., Baudelet G., Driege Y., Kreike M., Staal J., Beyaert R. The paracaspase MALT1 mediates CARD14-induced signaling in keratinocytes. EMBO Rep. 2016; 17(6): 914–927. doi: 10.15252/embr.201642109.
Chai L.Y., Netea M.G., Tai B.C., Khin L.W., Vonk A.G., Teo B.W., Schlamm H.T., Herbrecht R., Donnelly J.P., Troke P.F., Kullberg B.J. An elevated pro-inflammatory cytokine response is linked to development of amphotericin B-induced nephrotoxicity. J. Antimicrob. Chemother. 2013; 68(7): 1655–1659. doi:10.1093/jac/dkt055.
Kim B., Srivastava S.K., Kim S.H. Caspase-9 as a therapeutic target for treating cancer. Expert Opin. Ther. Targets. 2015; 19(1): 113–127. doi: 10.1517/14728222.2014.961425.
Zhang Y., Johansson E., Miller M.L., Jänicke R.U., Ferguson D.J., Plas D., Meller J., Anderson M.W. Identification of a conserved anti-apoptotic protein that modulates the mitochondrial apoptosis pathway. PLoS One 2011; 6(9): e25284. doi: 10.1371/journal.pone.0025284.
D'Osualdo A., Anania V.G., Yu K., Lill J.R., Kaufman R.J., Matsuzawa S., Reed J.C. Transcription Factor ATF4 Induces NLRP1 Inflammasome Expression during Endoplasmic Reticulum Stress. PLoS One 2015; 10(6): e0130635. doi: 10.1371/journal.pone.0130635. eCollection 2015.
Man S.M., Kanneganti T.D. Regulation of inflammasome activation. Immunol. Rev. 2015; 265(1): 6–21. doi: 10.1111/imr.12296.
Bruey J.M., Bruey-Sedano N., Luciano F., Zhai D., Balpai R., Xu C., Kress C.L., Bailly-Maitre B., Li X., Osterman A., Matsuzawa S., Terskikh A.V., Faustin B., Reed J.C. Bcl-2 and Bcl-XL regulate proinflammatory caspase-1 activation by interaction with NALP1. Cell. 2007; 129(1): 45–56.
Deegan S., Saveljeva S., Logue S.E., Pakos-Zebrucka K., Gupta S., Vandenabeele P., Bertrand M.J., Samali A. Deficiency in the mitochondrial apoptotic pathway reveals the toxic potential of autophagy under ER stress conditions. Autophagy 2014; 10(11): 1921–1936. doi: 10.4161/15548627. 2014.981790.
Masters S.L., Gerlic M., Metcalf D., Preston S., Pellegrini M., O'Donnell J.A., McArthur K., Baldwin T.M., Chevrier S., Nowell C.J., Cengia L.H., Henley K.J., Collinge J.E., Kastner D.L., Feigenbaum L., Hilton D.J., Alexander W.S., Kile B.T., Croker B.A. NLRP1 inflammasome activation induces pyroptosis of hematopoietic progenitor cells. Immunity 2012; 37(6): 1009–1023. doi: 10.1016/j.immuni.2012.08.027.
Gehrke N., Garcia-Bardon D., Mann A., Schad A., Alt Y., Wörns M.A., Sprinzl M.F., Zimmermann T., Menke J., Engstler A.J., Bergheim I., He Y.W., Galle P.R., Schuchmann M., Schattenberg J.M. Acute organ failure following the loss of anti-apoptotic cellular FLICE-inhibitory protein involves activation of innate immune receptors. Cell. Death. Differ. 2015; 22(5): 826–837. doi: 10.1038/cdd.2014.178.