KEYWORDS
TOPICS
ABSTRACT
Introduction:
Traditional Eastern medicine (TEM) is becoming increasingly more popular in highly developed Western countries as an alternative form of supporting health and body care. Many herbs used in this medical practice possess antioxidant, anti-inflammatory and immunomodulatory effects. The skin aging process may progress with age, when collagen and elastin fibers gradually decrease. Excessive exposure to UV radiation, resulting in an increase in the production of free radicals, leads to damage at the molecular level to numerous structures in the body including the acceleration of skin aging.

Material and methods:
The content of polyphenolic compounds (among others: phenolic acids and flavonoids), antioxidant potential (ABTS, DPPH and FRAP assays) as well as the influence on the activity of enzymes, collagenase and elastase, were determined in infusions obtained from Gynostemma pentaphyllum, Tinospora cordifolia, Astragalus membranaceus, Codonopsis pilosula, Asparagus racemosus and Ocimum sanctum.

Results:
The highest content of polyphenolic compounds and the strongest antioxidant properties were observed in the infusions obtained from the O. sanctum herb, while the greatest ability to inhibit collagenase and elastase was observed in the infusions obtained from the T. cordifolia leaves.

Conclusions:
Infusions from the O. sanctum herb and T. cordifolia leaves may have a potentially beneficial effect on the skin and may be used in anti-aging formulations.
ABBREVIATIONS
ABTS – 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt; ANOVA – analysis of variance; CA – caffeic acid; CAE – caffeic acid equivalents; D – C. pilosula (Dang shen); DPPH – 2,2-diphenyl-1-picrylhydrazyl; EGCG – epigallocatechin gallate; FALGPA – N-[3-(2-furyl)acryloyl]-Leu-Gly-Pro-Ala; FeE – iron (II) sulfate equivalents; FR – free radicals; FRAP – ferric reducing ability of plasma; G – T. cordifolia (Guduchi); GA – gallic acid; GAE – gallic acid equivalents; H – A. membranaceus (Huang Qi); J – G. pentaphyllum (Jiaogulan); LSD test – least significant differences test; OS – oxidative stress; RE – rutoside equivalents; ROS – reactive oxygen species; S – A. racemosus (Shatavari); SD – standard deviation; Suc-(Ala)3-pNA – N-succinyl-Ala-Ala-Ala-p-nitroanilide; T – O. sanctum (Tulsi); TEM – traditional Eastern medicine; TFC – total flavonoid content; TPAC – total phenolic acid content; TPC – total phenol content; TPTZ – 2,4,6-Tris(2-pyridyl)-s-triazine; TRIS –tris(hydroxymethyl)aminomethane; VC – ascorbic acid (vitamin C); VCE – vitamin C equivalents.
FUNDING
This work was supported by the Medical University of Silesia, Katowice, Poland, grant number: PCN-1-018/N/2/F.
REFERENCES (47)
1.
van Wyk A.S., Prinsloo G. Health, safety and quality concerns of plant-based traditional medicines and herbal remedies. S. Afr. J. Bot. 2020; 133: 54–62, doi: 10.1016/j.sajb.2020.06.031.
 
2.
Patwardhan B., Wieland L.S., Aginam O., Chuthaputti A., Ghelman R., Ghods R. et al. Evidence-based traditional medicine for transforming global health and well-being. J. Ayurveda Integr. Med. 2023; 14(4): 100790, doi: 10.1016/j.jaim.2023.100790.
 
3.
Forman H.J., Zhang H. Author Correction: Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021; 20(8): 652, doi: 10.1038/s41573-021-00267-5.
 
4.
Gu Y., Han J., Jiang C., Zhang Y. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res. Rev. 2020; 59: 101036, doi: 10.1016/j.arr.2020.101036.
 
5.
Nakai K., Tsuruta D. What are reactive oxygen species, free radicals, and oxidative stress in skin diseases? Int. J. Mol. Sci. 2021; 22(19): 10799, doi: 10.3390/ijms221910799.
 
6.
Deniz F.S.S., Orhan I.E., Duman H. Profiling cosmeceutical effects of various herbal extracts through elastase, collagenase, tyrosinase inhibitory and antioxidant assays. Phytochem. Lett. 2021; 45: 171–183, doi: 10.1016/j.phytol.2021.08.019.
 
7.
Imokawa G., Ishida K. Biological mechanisms underlying the ultraviolet radiation-induced formation of skin wrinkling and sagging I: reduced skin elasticity, highly associated with enhanced dermal elastase activity, triggers wrinkling and sagging. Int. J. Mol. Sci. 2015; 16(4): 7753–7775, doi: 10.3390/ijms16047753.
 
8.
Baumann L., Bernstein E.F., Weiss A.S., Bates D., Humphrey S., Silberberg M. et al. Clinical relevance of elastin in the structure and function of skin. Aesthet. Surg. J. Open Forum 2021; 3(3): ojab019, doi: 10.1093/asjof/ojab019.
 
9.
Su C., Li N., Ren R., Wang Y., Su X., Lu F. et al. Progress in the medicinal value, bioactive compounds, and pharmacological activities of Gynostemma pentaphyllum. Molecules 2021; 26(20): 6249, doi: 10.3390/molecules26206249.
 
10.
Li Y., Lin W., Huang J., Xie Y., Ma W. Anti-cancer effects of Gynostemma pentaphyllum (Thunb.) Makino (Jiaogulan). Chin. Med. 2016; 11: 43, doi: 10.1186/s13020-016-0114-9.
 
11.
Huang G., Yasir M., Zheng Y., Khan I. Prebiotic properties of jiaogulan in the context of gut microbiome. Food Sci. Nutr. 2022; 10(3): 731–739, doi: 10.1002/fsn3.2701.
 
12.
Sharma P., Dwivedee B.P., Bisht D., Dash A.K., Kumar D. The chemical constituents and diverse pharmacological importance of Tinospora cordifolia. Heliyon 2019; 5(9): e02437, doi: 10.1016/j.heliyon.2019.e02437.
 
13.
Gupta A., Gupta P., Bajpai G. Tinospora cordifolia (Giloy): an insight on the multifarious pharmacological paradigms of a most promising medicinal ayurvedic herb. Heliyon 2024; 10(4): e26125, doi: 10.1016/j.heliyon.2024.e26125.
 
14.
Zheng Y., Ren W., Zhang L., Zhang Y., Liu D., Liu Y. A review of the pharmacological action of Astragalus polysaccharide. Front. Pharmacol. 2020; 11: 349, doi: 10.3389/fphar.2020.00349.
 
15.
Berezutsky M.A., Durnova N.A., Vlasova I.A. Experimental and clinical studies of mechanisms of the antiaging effects of chemical compounds in Astragalus membranaceus (review). Adv. Gerontol. 2020; 10(2): 142–149, doi: 10.1134/S2079057020020046.
 
16.
Sheik A., Kim K., Varaprasad G.L., Lee H., Kim S., Kim E. et al. The anti-cancerous activity of adaptogenic herb Astragalus membranaceus. Phytomedicine 2021; 91: 153698, doi: 10.1016/j.phymed.2021.153698.
 
17.
Williamson E.M., Heinrich M., Edwards S.E., da Costa Rocha I. Fitofarmaceutyki: oparte na dowodach naukowych kompendium leczniczych produktów ziołowych. M. Krauze-Baranowska [ed.]. Wyd. Lekarskie PZWL. Warszawa 2022.
 
18.
Luan F., Ji Y., Peng L., Liu Q., Cao H., Yang Y. et al. Extraction, purification, structural characteristics and biological properties of the polysaccharides from Codonopsis pilosula: a review. Carbohydr. Polym. 2021; 261: 117863, doi: 10.1016/j.carbpol.2021.117863.
 
19.
Zou Y.F., Zhang Y.Y., Paulsen B.S., Fu Y.P., Huang C., Feng B. et al. Prospects of Codonopsis pilosula polysaccharides: structural features and bioactivities diversity. Trends Food Sci. Technol. 2020; 103: 1–11, doi: 10.1016/j.tifs.2020.06.012.
 
20.
Gao S.M., Liu J.S., Wang M., Cao T.T., Qi Y.D., Zhang B.G. et al. Traditional uses, phytochemistry, pharmacology and toxicology of Codonopsis: a review. J. Ethnopharmacol. 2018; 219: 50–70, doi: 10.1016/j.jep.2018.02.039.
 
21.
Fan Y., Long Y., Gong Y., Gao X., Zheng G., Ji H. Systemic immunomodulatory effects of Codonopsis pilosula glucofructan on S180 solid-tumor-bearing mice. Int. J. Mol. Sci. 2023; 24(21): 15598, doi: 10.3390/ijms242115598.
 
22.
Alok S., Jain S.K., Verma A., Kumar M., Mahor A., Sabharwal M. Plant profile, phytochemistry and pharmacology of Asparagus racemosus (Shatavari): a review. Asian Pac. J. Trop. Dis. 2013; 3(3): 242–251, doi: 10.1016/S2222-1808(13)60049-3.
 
23.
Singh R., Sharma L. GC-MS analysis of bioactive chemicals in ethanolic root extract of Asparagus racemosus. J. Exp. Zool. India 2024; 27(1): 673–678, doi: 10.51470/jez.2024.27.1.673.
 
24.
Singh A.K., Srivastava A., Kumar V., Singh K. Phytochemicals, medicinal and food applications of Shatavari (Asparagus racemosus): an updated review. Nat. Prod. J. 2018; 8(1): 32–44, doi: 10.2174/2210315507666170922145258.
 
25.
Taepongsorat L., Rattana S. Antioxidant activities of ethanolic and aqueous extracts of Asparagus racemosus roots. Pharmacogn. J. 2018; 10(6): 1129–1132, doi: 10.5530/pj.2018.6.192.
 
26.
Hussain A.I., Chatha S.A.S., Kamal G.M., Ali M.A., Hanif M.A., Lazhari M.I. Chemical composition and biological activities of essential oil and extracts from Ocimum sanctum. Int. J. Food Prop. 2017; 20(7): 1569–1581, doi: 10.1080/10942912.2016.1214145.
 
27.
Cohen M.M. Tulsi – Ocimum sanctum: a herb for all reasons. J. Ayurveda Integr. Med. 2014; 5(4): 251–259, doi: 10.4103/0975-9476.146554.
 
28.
Jamshidi N., Cohen M.M. The clinical efficacy and safety of Tulsi in humans: a systematic review of the literature. Evid. Based Complement. Alternat. Med. 2017; 2017: 9217567, doi: 10.1155/2017/9217567.
 
29.
Solanki Y., Agrawal V. Pharmacological activities of Ocimum sanctum (Tulsi): A review. Int. Res. J. Mod. Eng. Technol. Sci. 2024; 6(1): 2774–2776, doi: 10.56726/IRJMETS48783.
 
30.
Pérez-Ramírez I.F., González-Dávalos M.L., Mora O., Gallegos-Corona M.A., Reynoso-Camacho R. Effect of Ocimum sanctum and Crataegus pubescens aqueous extracts on obesity, inflammation, and glucose metabolism. J. Funct. Foods 2017; 35: 24–31, doi: 10.1016/j.jff.2017.05.028.
 
31.
Lunić T.M., Oalđe M.M., Mandić M.R., Sabovljević A.D., Sabovljević M.S., Gašić U.M. et al. Extracts characterization and in vitro evaluation of potential immunomodulatory activities of the moss Hypnum cupressiforme Hedw. Molecules 2020; 25(15): 3343, doi: 10.3390/molecules25153343.
 
32.
Mihailović V., Kreft S., Benković E.T., Ivanović N., Stanković M.S. Chemical profile, antioxidant activity and stability in stimulated gastrointestinal tract model system of three Verbascum species. Ind. Crops Prod. 2016; 89: 141–151, doi: 10.1016/j.indcrop.2016.04.075.
 
33.
Szałabska-Rąpała K., Borymska W., Zych M., Kaczmarczyk-Żebrowska I. Honokiol and magnolol – comparison of inhibitory activity of enzymes involved in carbohydrate and lipid metabolism and antioxidant properties in in vitro studies. Acta Pol. Pharm. Drug Res. 2023; 80(3): 457–471, doi: 10.32383/appdr/168699.
 
34.
Benzie I.F., Strain J.J. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999; 299: 15–27, doi: 10.1016/S0076-6879(99)99005-5.
 
35.
Jakimiuk K., Strawa J.W., Granica S., Tomczyk M. New flavone C-glycosides from Scleranthus perennis and their anti-collagenase activity. Molecules 2021; 26(18): 5631, doi: 10.3390/molecules26185631.
 
36.
Chiocchio I., Mandrone M., Sanna C., Maxia A., Tacchini M., Poli F. Screening of a hundred plant extracts as tyrosinase and elastase inhibitors, two enzymatic targets of cosmetic interest. Ind. Crops Prod. 2018; 122: 498–505, doi: 10.1016/j.indcrop.2018.06.029.
 
37.
Chaiyana W., Anuchapreeda S., Punyoyai C., Neimkhum W., Lee K.H., Lin W.C. et al. Ocimum sanctum Linn. as a natural source of skin anti-ageing compounds. Ind. Crops Prod. 2019; 127: 217–224, doi: 10.1016/j.indcrop.2018.10.081.
 
38.
Gajula D., Verghese M., Boateng J., Walker L.T., Shackelford L., Mentreddy S.R. et al. Determination of total phenolics, flavonoids and antioxidant and chemopreventive potential of basil (Ocimum basilicum L. and Ocimum tenuiflorum L.). Int. J. Cancer Res. 2009; 5(4): 130–143, doi: 10.3923/ijcr.2009.130.143.
 
39.
Sankhalkar S., Vernekar V. Quantitative and qualitative analysis of phenolic and flavonoid content in Moringa oleifera Lam and Ocimum tenuiflorum L. Pharmacognosy Res. 2016; 8(1): 16–21, doi: 10.4103/0974-8490.171095.
 
40.
Borah R., Biswas S.P. Tulsi (Ocimum sanctum), excellent source of phytochemicals. Int. J. Environ. Agric. Biotechnol. 2018; 3(5): 265258, doi: 10.22161/ijeab/3.5.21.
 
41.
Chaudhary A., Sharma S., Mittal A., Gupta S., Dua A. Phytochemical and antioxidant profiling of Ocimum sanctum. J. Food Sci. Technol. 2020; 57(10): 3852–3863, doi: 10.1007/s13197-020-04417-2.
 
42.
Sharma R., Bolleddu R., Maji J.K., Ruknuddin G., Prajapati P.K. In-Vitro α-amylase, α-glucosidase inhibitory activities and in-vivo anti-hyperglycemic potential of different dosage forms of Guduchi (Tinospora cordifolia [Willd.] Miers) prepared with Ayurvedic Bhavana process. Front. Pharmacol. 2021; 12: 642300, doi: 10.3389/fphar.2021.642300.
 
43.
Wang Y.R., Xing S.F., Lin M., Gu Y.L., Piao X.L. Determination of flavonoids from Gynostemma pentaphyllum using ultra-performance liquid chromatography with triple quadrupole tandem mass spectrometry and an evaluation of their antioxidant activity in vitro. J. Liq. Chromatogr. Relat. Technol. 2018; 41(8): 437–444, doi: 10.1080/10826076.2018.1448281.
 
44.
Wang Z., Luo D., Ena C. Optimization of polysaccharides extraction from Gynostemma pentaphyllum Makino using Uniform Design. Carbohydr. Polym. 2007; 69(2): 311–317, doi: 10.1016/j.carbpol.2006.10.013.
 
45.
Chaudhary N., Sabikhi L., Hussain S.A., Kumar M.H.S. A comparative study of the antioxidant and ACE inhibitory activities of selected herbal extracts. J. Herb. Med. 2020; 22: 100343, doi: 10.1016/j.hermed.2020.100343.
 
46.
Prakash J., Gupta S.K. Chemopreventive activity of Ocimum sanctum seed oil. J. Ethnopharmacol. 2000; 72(1–2): 29–34, doi: 10.1016/s0378-8741(00)00194-x.
 
47.
Yadav A., Yadav S., Dabur R. Higher plants exert interspecific effects on the phytoecdysteroids contents in Tinospora cordifolia. Chem. Biol. Lett. 2022; 9(1): 312.
 
eISSN:1734-025X
Journals System - logo
Scroll to top