Badanie właściwości antyoksydacyjnych wybranych surowców zielarskich z tradycyjnej medycyny wschodniej oraz ich wpływu na aktywność kolagenazy i elastazy
Więcej
Ukryj
1
Students’ Scientific Club, Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland
2
Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland
3
Doctoral School, Discipline of Pharmaceutical Sciences, Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland
Autor do korespondencji
Maria Zych
Department of Pharmacognosy and Phytochemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice
Ann. Acad. Med. Siles. 2024;78:259-268
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Wprowadzenie:
Tradycyjna medycyna wschodnia (traditional Eastern medicine – TEM) zyskuje coraz większą popularność w wysokorozwiniętych krajach Zachodu jako alternatywna forma wspierania zdrowia i pielęgnacji ciała. Wiele ziół stosowanych w tej praktyce medycznej posiada działanie antyoksydacyjne, przeciwzapalne czy immunomodulujące. Proces starzenia się skóry może postępować wraz z wiekiem, kiedy stopniowo ubywa włókien kolagenowych i elastynowych. Nadmierna ekspozycja na promieniowanie UV, pociągająca za sobą wzrost produkcji wolnych rodników, prowadzi do uszkodzeń na poziomie molekularnym licznych struktur w organizmie i m.in. przyspieszenia starzenia się skóry.
Materiał i metody:
W naparach otrzymanych z surowców pozyskanych z Gynostemma pentaphyllum, Tinospora cordifolia, Astragalus membranaceus, Codonopsis pilosula, Asparagus racemosus oraz Ocimum sanctum określono zawartość związków polifenolowych (m.in. kwasów fenolowych oraz flawonoidów), potencjał antyoksydacyjny (metodami ABTS, DPPH oraz FRAP), a także wpływ na aktywność enzymów – kolagenazy oraz elastazy.
Wyniki:
Najwyższą zawartość związków polifenolowych oraz najsilniejsze właściwości antyoksydacyjne obserwowano w naparach pozyskanych z ziela O. sanctum, natomiast największą zdolność do hamowania kolagenazy i elastazy wykazywały napary pozyskane z liści T. cordifolia.
Wnioski:
Napary z O. sanctum i T. cordifolia mogą wykazywać potencjalnie korzystny wpływ na skórę, a także znaleźć zastosowanie w formulacjach stosowanych jako produkty przeciwstarzeniowe.
REFERENCJE (47)
1.
van Wyk A.S., Prinsloo G. Health, safety and quality concerns of plant-based traditional medicines and herbal remedies. S. Afr. J. Bot. 2020; 133: 54–62, doi: 10.1016/j.sajb.2020.06.031.
2.
Patwardhan B., Wieland L.S., Aginam O., Chuthaputti A., Ghelman R., Ghods R. et al. Evidence-based traditional medicine for transforming global health and well-being. J. Ayurveda Integr. Med. 2023; 14(4): 100790, doi: 10.1016/j.jaim.2023.100790.
3.
Forman H.J., Zhang H. Author Correction: Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021; 20(8): 652, doi: 10.1038/s41573-021-00267-5.
4.
Gu Y., Han J., Jiang C., Zhang Y. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res. Rev. 2020; 59: 101036, doi: 10.1016/j.arr.2020.101036.
5.
Nakai K., Tsuruta D. What are reactive oxygen species, free radicals, and oxidative stress in skin diseases? Int. J. Mol. Sci. 2021; 22(19): 10799, doi: 10.3390/ijms221910799.
6.
Deniz F.S.S., Orhan I.E., Duman H. Profiling cosmeceutical effects of various herbal extracts through elastase, collagenase, tyrosinase inhibitory and antioxidant assays. Phytochem. Lett. 2021; 45: 171–183, doi: 10.1016/j.phytol.2021.08.019.
7.
Imokawa G., Ishida K. Biological mechanisms underlying the ultraviolet radiation-induced formation of skin wrinkling and sagging I: reduced skin elasticity, highly associated with enhanced dermal elastase activity, triggers wrinkling and sagging. Int. J. Mol. Sci. 2015; 16(4): 7753–7775, doi: 10.3390/ijms16047753.
8.
Baumann L., Bernstein E.F., Weiss A.S., Bates D., Humphrey S., Silberberg M. et al. Clinical relevance of elastin in the structure and function of skin. Aesthet. Surg. J. Open Forum 2021; 3(3): ojab019, doi: 10.1093/asjof/ojab019.
9.
Su C., Li N., Ren R., Wang Y., Su X., Lu F. et al. Progress in the medicinal value, bioactive compounds, and pharmacological activities of Gynostemma pentaphyllum. Molecules 2021; 26(20): 6249, doi: 10.3390/molecules26206249.
10.
Li Y., Lin W., Huang J., Xie Y., Ma W. Anti-cancer effects of Gynostemma pentaphyllum (Thunb.) Makino (Jiaogulan). Chin. Med. 2016; 11: 43, doi: 10.1186/s13020-016-0114-9.
11.
Huang G., Yasir M., Zheng Y., Khan I. Prebiotic properties of jiaogulan in the context of gut microbiome. Food Sci. Nutr. 2022; 10(3): 731–739, doi: 10.1002/fsn3.2701.
12.
Sharma P., Dwivedee B.P., Bisht D., Dash A.K., Kumar D. The chemical constituents and diverse pharmacological importance of Tinospora cordifolia. Heliyon 2019; 5(9): e02437, doi: 10.1016/j.heliyon.2019.e02437.
13.
Gupta A., Gupta P., Bajpai G. Tinospora cordifolia (Giloy): an insight on the multifarious pharmacological paradigms of a most promising medicinal ayurvedic herb. Heliyon 2024; 10(4): e26125, doi: 10.1016/j.heliyon.2024.e26125.
14.
Zheng Y., Ren W., Zhang L., Zhang Y., Liu D., Liu Y. A review of the pharmacological action of Astragalus polysaccharide. Front. Pharmacol. 2020; 11: 349, doi: 10.3389/fphar.2020.00349.
15.
Berezutsky M.A., Durnova N.A., Vlasova I.A. Experimental and clinical studies of mechanisms of the antiaging effects of chemical compounds in Astragalus membranaceus (review). Adv. Gerontol. 2020; 10(2): 142–149, doi: 10.1134/S2079057020020046.
16.
Sheik A., Kim K., Varaprasad G.L., Lee H., Kim S., Kim E. et al. The anti-cancerous activity of adaptogenic herb Astragalus membranaceus. Phytomedicine 2021; 91: 153698, doi: 10.1016/j.phymed.2021.153698.
17.
Williamson E.M., Heinrich M., Edwards S.E., da Costa Rocha I. Fitofarmaceutyki: oparte na dowodach naukowych kompendium leczniczych produktów ziołowych. M. Krauze-Baranowska [ed.]. Wyd. Lekarskie PZWL. Warszawa 2022.
18.
Luan F., Ji Y., Peng L., Liu Q., Cao H., Yang Y. et al. Extraction, purification, structural characteristics and biological properties of the polysaccharides from Codonopsis pilosula: a review. Carbohydr. Polym. 2021; 261: 117863, doi: 10.1016/j.carbpol.2021.117863.
19.
Zou Y.F., Zhang Y.Y., Paulsen B.S., Fu Y.P., Huang C., Feng B. et al. Prospects of Codonopsis pilosula polysaccharides: structural features and bioactivities diversity. Trends Food Sci. Technol. 2020; 103: 1–11, doi: 10.1016/j.tifs.2020.06.012.
20.
Gao S.M., Liu J.S., Wang M., Cao T.T., Qi Y.D., Zhang B.G. et al. Traditional uses, phytochemistry, pharmacology and toxicology of Codonopsis: a review. J. Ethnopharmacol. 2018; 219: 50–70, doi: 10.1016/j.jep.2018.02.039.
21.
Fan Y., Long Y., Gong Y., Gao X., Zheng G., Ji H. Systemic immunomodulatory effects of Codonopsis pilosula glucofructan on S180 solid-tumor-bearing mice. Int. J. Mol. Sci. 2023; 24(21): 15598, doi: 10.3390/ijms242115598.
22.
Alok S., Jain S.K., Verma A., Kumar M., Mahor A., Sabharwal M. Plant profile, phytochemistry and pharmacology of Asparagus racemosus (Shatavari): a review. Asian Pac. J. Trop. Dis. 2013; 3(3): 242–251, doi: 10.1016/S2222-1808(13)60049-3.
23.
Singh R., Sharma L. GC-MS analysis of bioactive chemicals in ethanolic root extract of Asparagus racemosus. J. Exp. Zool. India 2024; 27(1): 673–678, doi: 10.51470/jez.2024.27.1.673.
24.
Singh A.K., Srivastava A., Kumar V., Singh K. Phytochemicals, medicinal and food applications of Shatavari (Asparagus racemosus): an updated review. Nat. Prod. J. 2018; 8(1): 32–44, doi: 10.2174/2210315507666170922145258.
25.
Taepongsorat L., Rattana S. Antioxidant activities of ethanolic and aqueous extracts of Asparagus racemosus roots. Pharmacogn. J. 2018; 10(6): 1129–1132, doi: 10.5530/pj.2018.6.192.
26.
Hussain A.I., Chatha S.A.S., Kamal G.M., Ali M.A., Hanif M.A., Lazhari M.I. Chemical composition and biological activities of essential oil and extracts from Ocimum sanctum. Int. J. Food Prop. 2017; 20(7): 1569–1581, doi: 10.1080/10942912.2016.1214145.
27.
Cohen M.M. Tulsi – Ocimum sanctum: a herb for all reasons. J. Ayurveda Integr. Med. 2014; 5(4): 251–259, doi: 10.4103/0975-9476.146554.
28.
Jamshidi N., Cohen M.M. The clinical efficacy and safety of Tulsi in humans: a systematic review of the literature. Evid. Based Complement. Alternat. Med. 2017; 2017: 9217567, doi: 10.1155/2017/9217567.
29.
Solanki Y., Agrawal V. Pharmacological activities of Ocimum sanctum (Tulsi): A review. Int. Res. J. Mod. Eng. Technol. Sci. 2024; 6(1): 2774–2776, doi: 10.56726/IRJMETS48783.
30.
Pérez-Ramírez I.F., González-Dávalos M.L., Mora O., Gallegos-Corona M.A., Reynoso-Camacho R. Effect of Ocimum sanctum and Crataegus pubescens aqueous extracts on obesity, inflammation, and glucose metabolism. J. Funct. Foods 2017; 35: 24–31, doi: 10.1016/j.jff.2017.05.028.
31.
Lunić T.M., Oalđe M.M., Mandić M.R., Sabovljević A.D., Sabovljević M.S., Gašić U.M. et al. Extracts characterization and in vitro evaluation of potential immunomodulatory activities of the moss Hypnum cupressiforme Hedw. Molecules 2020; 25(15): 3343, doi: 10.3390/molecules25153343.
32.
Mihailović V., Kreft S., Benković E.T., Ivanović N., Stanković M.S. Chemical profile, antioxidant activity and stability in stimulated gastrointestinal tract model system of three Verbascum species. Ind. Crops Prod. 2016; 89: 141–151, doi: 10.1016/j.indcrop.2016.04.075.
33.
Szałabska-Rąpała K., Borymska W., Zych M., Kaczmarczyk-Żebrowska I. Honokiol and magnolol – comparison of inhibitory activity of enzymes involved in carbohydrate and lipid metabolism and antioxidant properties in in vitro studies. Acta Pol. Pharm. Drug Res. 2023; 80(3): 457–471, doi: 10.32383/appdr/168699.
34.
Benzie I.F., Strain J.J. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999; 299: 15–27, doi: 10.1016/S0076-6879(99)99005-5.
35.
Jakimiuk K., Strawa J.W., Granica S., Tomczyk M. New flavone C-glycosides from Scleranthus perennis and their anti-collagenase activity. Molecules 2021; 26(18): 5631, doi: 10.3390/molecules26185631.
36.
Chiocchio I., Mandrone M., Sanna C., Maxia A., Tacchini M., Poli F. Screening of a hundred plant extracts as tyrosinase and elastase inhibitors, two enzymatic targets of cosmetic interest. Ind. Crops Prod. 2018; 122: 498–505, doi: 10.1016/j.indcrop.2018.06.029.
37.
Chaiyana W., Anuchapreeda S., Punyoyai C., Neimkhum W., Lee K.H., Lin W.C. et al. Ocimum sanctum Linn. as a natural source of skin anti-ageing compounds. Ind. Crops Prod. 2019; 127: 217–224, doi: 10.1016/j.indcrop.2018.10.081.
38.
Gajula D., Verghese M., Boateng J., Walker L.T., Shackelford L., Mentreddy S.R. et al. Determination of total phenolics, flavonoids and antioxidant and chemopreventive potential of basil (Ocimum basilicum L. and Ocimum tenuiflorum L.). Int. J. Cancer Res. 2009; 5(4): 130–143, doi: 10.3923/ijcr.2009.130.143.
39.
Sankhalkar S., Vernekar V. Quantitative and qualitative analysis of phenolic and flavonoid content in Moringa oleifera Lam and Ocimum tenuiflorum L. Pharmacognosy Res. 2016; 8(1): 16–21, doi: 10.4103/0974-8490.171095.
40.
Borah R., Biswas S.P. Tulsi (Ocimum sanctum), excellent source of phytochemicals. Int. J. Environ. Agric. Biotechnol. 2018; 3(5): 265258, doi: 10.22161/ijeab/3.5.21.
41.
Chaudhary A., Sharma S., Mittal A., Gupta S., Dua A. Phytochemical and antioxidant profiling of Ocimum sanctum. J. Food Sci. Technol. 2020; 57(10): 3852–3863, doi: 10.1007/s13197-020-04417-2.
42.
Sharma R., Bolleddu R., Maji J.K., Ruknuddin G., Prajapati P.K. In-Vitro α-amylase, α-glucosidase inhibitory activities and in-vivo anti-hyperglycemic potential of different dosage forms of Guduchi (Tinospora cordifolia [Willd.] Miers) prepared with Ayurvedic Bhavana process. Front. Pharmacol. 2021; 12: 642300, doi: 10.3389/fphar.2021.642300.
43.
Wang Y.R., Xing S.F., Lin M., Gu Y.L., Piao X.L. Determination of flavonoids from Gynostemma pentaphyllum using ultra-performance liquid chromatography with triple quadrupole tandem mass spectrometry and an evaluation of their antioxidant activity in vitro. J. Liq. Chromatogr. Relat. Technol. 2018; 41(8): 437–444, doi: 10.1080/10826076.2018.1448281.
44.
Wang Z., Luo D., Ena C. Optimization of polysaccharides extraction from Gynostemma pentaphyllum Makino using Uniform Design. Carbohydr. Polym. 2007; 69(2): 311–317, doi: 10.1016/j.carbpol.2006.10.013.
45.
Chaudhary N., Sabikhi L., Hussain S.A., Kumar M.H.S. A comparative study of the antioxidant and ACE inhibitory activities of selected herbal extracts. J. Herb. Med. 2020; 22: 100343, doi: 10.1016/j.hermed.2020.100343.
46.
Prakash J., Gupta S.K. Chemopreventive activity of Ocimum sanctum seed oil. J. Ethnopharmacol. 2000; 72(1–2): 29–34, doi: 10.1016/s0378-8741(00)00194-x.
47.
Yadav A., Yadav S., Dabur R. Higher plants exert interspecific effects on the phytoecdysteroids contents in Tinospora cordifolia. Chem. Biol. Lett. 2022; 9(1): 312.