Blood rheological properties and methods of their measurement
 
More details
Hide details
1
Department of Medical Biophysics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
 
 
Corresponding author
Tomasz Pryzwan   

Katedra i Zakład Biofizyki Lekarskiej, Wydział Nauk Medycznych w Katowicach, Śląski Uniwersytet Medyczny w Katowicach, ul. Medyków 18, 40-752 Katowice, Polska
 
 
Ann. Acad. Med. Siles. 2024;78:1-10
 
KEYWORDS
TOPICS
ABSTRACT
From the physical point of view, blood is a multi-phase and multi-component system; plasma is the dispersion medium and the morphotic elements are the dispersed phase. Flow rate analysis is essential to determine the correct rheological properties of blood. Slow blood flow can lead to increased erythrocyte aggregation, which is due to fibrinogen and globulins. The deformability of red blood cells is also important, especially during flow through the capillaries, where they must adapt to the smaller diameter of the vessels. Viscosity is defined as the internal resistance to flow; if we consider blood as a component of two parallel layers, then viscosity is described by the friction of two adjacent layers. The liquid layers move at different velocities parallel to each other, and a velocity gradient is created. To create it, a force is needed to move the layers, which is referred to as shear stress. Erythrocyte aggregates are observed physiologically as well as in the course of some diseases such as ischemic heart disease, myocardial infarction and atherosclerosis. There are two types of factors inducing the formation of aggregates: the external factors include the plasma protein concentration, hematocrit and shear forces; the internal factors are the shape and deformability of the erythrocytes in addition to the properties of the cell membrane. Also in hyperfibrinogenemia, erythrocyte aggregation, plasma viscosity and microvascular resistance increase. The laser-assisted optical rotational cell analyzer (LORCA) is used to test the deformability and aggregation of erythrocytes. It combines the techniques of syllectometry with ektacytometry. The formation of a three-dimensional structure of red blood cells has a significant impact on the measurement of blood viscosity and low shear rate blood flow.
 
REFERENCES (69)
1.
Cho Y.I., Cho D.J. Hemorheology and microvascular disorders. Korean Circ. J. 2011; 41(6): 287–295, doi: 10.4070/kcj.2011.41.6.287.
 
2.
Gazurek D., Kępińska M., Kulis A., Koszela A. The effects of a single bout of submaximal exercise on rheological properties of the blood in children with type 1 diabetes mellitus. Clin. Diabetol. 2017; 6(2): 65–69, doi: 10.5603/DK.2017.0011.
 
3.
Marchewka A., Filar-Mierzwa K., Teległów A. Rheological blood properties versus physical exertion in the process of aging. Med. Rehab. 2009; 13(1): 19–22.
 
4.
Antonova N. Methods in blood rheology – from theoretical and experimental approach to clinical applications. Series on Biomechanics 2012; 27(1–2): 44–50.
 
5.
Mandal M. Rheology of blood: biophysical significance, measurement, pathophysiology and pharmacologic therapy. WJPPS 2016; 5(6): 2165–2184, doi: 10.20959/wjpps20166-6985.
 
6.
Kępińska M., Szyguła Z., Dąbrowski Z., Szarek M. Factors affecting changes in rheological properties of blood – literature review. Diagn. Lab. 2017; 53(4): 247–250, doi: 10.5604/01.3001.0013.7992.
 
7.
Kowal P., Marcinkowska-Gapińska A. Hemorheology of chosen clinical status. Neuroskop 2010; 12: 53–56.
 
8.
Rodrigues T., Mota R., Gales L., Campo-Deaño L. Understanding the complex rheology of human blood plasma. J. Rheol. 2022; 66(4): 761–774, doi: 10.1122/8.0000442.
 
9.
Chen G., Zhao L., Liu Y., Liao F., Han D., Zhou H. Regulation of blood viscosity in disease prevention and treatment. Chin. Sci. Bull. 2012; 57: 1946–1952, doi: 10.1007/s11434-012-5165-4.
 
10.
Li X., Peng Z., Lei H., Dao M., Karniadakis G.E. Probing red blood cell mechanics, rheology and dynamics with a two-component multi-scale model. Philos. Trans. A Math. Phys. Eng. Sci. 2014; 372(2021): 20130389, doi: 10.1098/rsta.2013.0389.
 
11.
Libionka A., Figiel W., Maga P., Gackowski A., Rostoff P., Paradowski A. et al. Blood viscosity in cardiac syndrome X and other cardiovascular disorders. Folia Cardiol. 2005; 12(7): 465–470.
 
12.
Teległów A., Ptaszek B., Marchewka J., Pawlus J., Głodzik J., Hawajska M. Impact of systemic cryotherapy on the rheological properties of the blood in healthy young males. J. Kinesiol. Exerc. Sci. 2014; 68(24): 39–46, doi: 10.5604/17310652.1161661.
 
13.
Rosenfeld L.G., Malta D.C., Szwarcwald C.L., Bacal N.S., Cuder M.A.M., Pereira C.A. et al. Reference values for blood count laboratory tests in the Brazilian adult population, National Health Survey. Rev. Bras. Epidemiol. 2019; 22(Suppl 2): E190003.SUPL.2, doi: 10.1590/1980-549720190003.supl.2.
 
14.
Ju M., Ye S.S., Low H.T., Zhang J., Cabrales P., Leo H.L. et al. Effect of deformability difference between two erythrocytes on their aggregation. Phys. Biol. 2013; 10(3): 036001, doi: 10.1088/1478-3975/10/3/036001.
 
15.
de Back D.Z., Kostova E.B., van Kraaij M., van den Berg T.K., van Bruggen R. Of macrophages and red blood cells; a complex love story. Front. Physiol. 2014; 5: 9, doi: 10.3389/fphys.2014.00009.
 
16.
Klei T.R.L., Dalimot J., Nota B., Veldthuis M., Mul F.P.J., Rademakers T. et al. Hemolysis in the spleen drives erythrocyte turnover. Blood 2020; 136(14): 1579–1589, doi: 10.1182/blood.2020005351.
 
17.
Yaylali Y.T., Kilic-Toprak E., Ozdemir Y., Senol H., Bor-Kucukatay M. Impaired blood rheology in pulmonary arterial hypertension. Heart Lung Circ. 2019; 28(7): 1067–1073, doi: 10.1016/j.hlc.2018.07.014.
 
18.
Song S.H., Kim J.H., Lee J.H., Yun Y.M., Choi D.H., Kim H.Y. Elevated blood viscosity is associated with cerebral small vessel disease in patients with acute ischemic stroke. BMC Neurol. 2017; 17(1): 20, doi: 10.1186/s12883-017-0808-3.
 
19.
Geislinger T.M., Franke T. Hydrodynamic lift of vesicles and red blood cells in flow – from Fåhræus & Lindqvist to microfluidic cell sorting. Adv. Colloid Interface Sci. 2014; 208: 161–176, doi: 10.1016/j.cis.2014.03.002.
 
20.
Rajzer M., Palka I., Kawecka-Jaszcz K. The role of the blood viscosity in the pathogenesis of the arterial hypertension. Arterial Hypertens. 2007; 11(1): 1–11.
 
21.
Irace C., Casciaro F., Scavelli F.B., Oliverio R., Cutruzzolà A., Cortese C. et al. Empagliflozin influences blood viscosity and wall shear stress in subjects with type 2 diabetes mellitus compared with incretin-based therapy. Cardiovasc. Diabetol. 2018; 17(1): 52, doi: 10.1186/s12933-018-0695-y.
 
22.
Nader E., Skinner S., Romana M., Fort R., Lemonne N., Guillot N. et al. Blood rheology: key parameters, impact on blood flow, role in sickle cell disease and effects of exercise. Front. Physiol. 2019; 10: 1329, doi: 10.3389/fphys.2019.01329.
 
23.
Wasilewski J., Poloński L. Importance of fibrinogen and the rheological properties of blood in atherosclerosis and coronary artery disease. Chor. Serca Naczyń 2010; 7(2): 62–71.
 
24.
Deng Y., Papageorgiou D.P., Li X., Perakakis N., Mantzoros C.S., Dao M. et al. Quantifying fibrinogen-dependent aggregation of red blood cells in type 2 diabetes mellitus. Biophys. J. 2020; 119(5): 900–912, doi: 10.1016/j.bpj.2020.07.026.
 
25.
Wu Y.F., Hsu P.S., Tsai C.S., Pan P.C., Chen Y.L. Significantly increased low shear rate viscosity, blood elastic modulus, and RBC aggregation in adults following cardiac surgery. Sci. Rep. 2018; 8(1): 7173, doi: 10.1038/s41598-018-25317-8.
 
26.
Tripette J., Nguyen L.C., Allard L., Robillard P., Soulez G., Cloutier G. In vivo venous assessment of red blood cell aggregate sizes in diabetic patients with a quantitative cellular ultrasound imaging method: proof of concept. PLoS One 2015; 10(4): e0124712, doi: 10.1371/journal.pone.0124712.
 
27.
Ozcan Cetin E.H., Könte H.C., Temizhan A. Blood viscosity should not be overlooked when evaluating the fibrinogen to albumin ratio. Angiology 2019; 70(5): 465–466, doi: 10.1177/0003319718822244.
 
28.
Peters S.A., Woodward M., Rumley A., Tunstall-Pedoe H.D., Lowe G.D. Plasma and blood viscosity in the prediction of cardiovascular disease and mortality in the Scottish Heart Health Extended Cohort Study. Eur. J. Prev. Cardiol. 2017; 24(2): 161–167, doi: 10.1177/2047487316672004.
 
29.
Wasilewski J., Turczyński B., Słowińska L., Kowalik V., Osadnik T., Poloński L. Haemorheological factors and myocardial reperfusion in patients with ST-elevation myocardial infarction undergoing primary coronary intervention. Kardiol. Pol. 2007; 65(7): 778–785.
 
30.
Tian D., Meng J. Exercise for prevention and relief of cardiovascular disease: prognoses, mechanisms, and approaches. Oxid. Med. Cell. Longev. 2019; 2019: 3756750, doi: 10.1155/2019/3756750.
 
31.
Wang C., Li G., Liang X., Qin C., Luo Q., Song R. et al. Predictive value of fibrinogen-to-albumin ratio for post-contrast acute kidney injury in patients undergoing elective percutaneous coronary intervention. Med. Sci. Monit. 2020; 26: e924498, doi: 10.12659/MSM.924498.
 
32.
Asaadi V., Azizbeigi K., Khosravi N., Haghnazari N. The effect of exercise training on fibrinogen and viscosity of plasma: comparing endurance continuous, circuit resistance and high intensity interval trainings in young obese men. J. Clin. Res. Paramed. Sci. 2019; 8(2): e97880, doi: 10.5812/jcrps.97880.
 
33.
Caimi G., Hopps E., Montana M., Andolina G., Urso C., Canino B. et al. Analysis of the blood viscosity behavior in the Sicilian study on juvenile myocardial infarction. Clin. Appl. Thromb. Hemost. 2018; 24(8): 1276–1281, doi: 10.1177/1076029618775511.
 
34.
Destiana D., Timan I.S. The relationship between hypercholesterolemia as a risk factor for stroke and blood viscosity measured using Digital Microcapillary®. J. Phys.: Conf. Ser. 2018; 1073(4): 042045, doi: 10.1088/1742-6596/1073/4/042045.
 
35.
Rosenson R.S., Lee M.L., Chen Q. Association of total VLDL particle concentrations with elevated blood viscosity in patients with type 2 diabetes. Diabetes Res. Clin. Pract. 2022; 183: 109180, doi: 10.1016/j.diabres.2021.109180.
 
36.
Sartini C., Barry S.J., Whincup P.H., Wannamethee S.G., Lowe G.D., Jefferis B.J. et al. Relationship between outdoor temperature and cardiovascular disease risk factors in older people. Eur. J. Prev. Cardiol. 2017; 24(4): 349–356, doi: 10.1177/2047487316682119.
 
37.
Filar-Mierzwa K., Marchewka A., Dąbrowski Z., Bac A., Marchewka J. Effects of dance movement therapy on the rheological properties of blood in elderly women. Clin. Hemorheol. Microcirc. 2019; 72(2): 211–219, doi: 10.3233/CH-180470.
 
38.
Mury P., Faes C., Millon A., Mura M., Renoux C., Skinner S. et al. Higher daily physical activity level is associated with lower RBC aggregation in carotid artery disease patients at high risk of stroke. Front. Physiol. 2017; 8: 1043, doi: 10.3389/fphys.2017.01043.
 
39.
Chmielewska K., Ptaszek B., Teległów A. The influence of sprint training on changes in the morphological and rheological properties of the blood. J. Kinesiol. Exerc. Sci. 2017; 27(80): 11–19, doi: 10.5604/01.3001.0012.2309.
 
40.
Martin C., Pialoux V., Faes C., Charrin E., Skinner S., Connes P. Does physical activity increase or decrease the risk of sickle cell disease complications? Br. J. Sports Med. 2018; 52(4); 214–218, doi: 10.1136/bjsports-2015-095317.
 
41.
Soltani M., Aghaei Bahmanbeglou N., Ahmadizad S. High-intensity interval training irrespective of its intensity improves markers of blood fluidity in hypertensive patients. Clin. Exp. Hypertens. 2020; 42(4): 309–314, doi: 10.1080/10641963.2019.1649687.
 
42.
Petrova E.V., Brecht H.P., Motamedi M., Oraevsky A.A., Ermilov S.A. In vivo optoacoustic temperature imaging for image-guided cryotherapy of prostate cancer. Phys. Med. Biol. 2018; 63(6): 064002, doi: 10.1088/1361-6560/aab241.
 
43.
Ptaszek B., Teległów A., Adamiak J., Głodzik J., Podsiadło S., Mucha D. et al. Effect of whole-body cryotherapy on morphological, rheological and biochemical indices of blood in people with multiple sclerosis. J. Clin. Med. 2021; 10(13): 2833, doi: 10.3390/jcm10132833.
 
44.
Naghedi-Baghdar H., Nazari S.M., Taghipour A., Nematy M., Shokri S., Mehri M.R. et al. Effect of diet on blood viscosity in healthy humans: a systematic review. Electron. Physician 2018; 10(3): 6563–6570, doi: 10.19082/6563.
 
45.
Sloop G.D., Weidman J.J., St Cyr J.A. Perspective: interesterified triglycerides, the recent increase in deaths from heart disease, and elevated blood viscosity. Ther. Adv. Cardiovasc. Dis. 2018; 12(1): 23–28, doi: 10.1177/1753944717745507.
 
46.
Dhas Y., Banerjee J., Mishra N. Blood viscosity, glycemic markers and blood pressure: a study in middle-aged normotensive and hypertensive type 2 diabetics. Indian J. Clin. Biochem. 2020; 35(1): 102–108, doi: 10.1007/s12291-018-0798-y.
 
47.
Minato S., Takenouchi A., Uchida J., Tsuboi A., Kurata M., Fukuo K. et al. Association of whole blood viscosity with metabolic syndrome in type 2 diabetic patients: independent association with post-breakfast triglyceridemia. J. Clin. Med. Res. 2017; 9(4): 332–338, doi: 10.14740/jocmr2885w.
 
48.
Dogan A., Oylumlu M. Increased monocyte-to-HDL cholesterol ratio is related to cardiac syndrome X. Acta Cardiol. 2017; 72(5): 516–521, doi: 10.1080/00015385.2017.1299521.
 
49.
Kilic-Toprak E., Yaylali O., Yaylali Y.T., Ozdemir Y., Yuksel D., Senol H. et al. Hemorheological dysfunction in cardiac syndrome X. Acta Cardiol. 2018; 73(3): 257-265, doi: 10.1080/00015385.2017.1373967.
 
50.
Schiapaccassa A., Maranhão P.A., de Souza M.D.G.C., Panazzolo D.G., Nogueira Neto J.F., Bouskela E. et al. 30-days effects of vildagliptin on vascular function, plasma viscosity, inflammation, oxidative stress, and intestinal peptides on drug-naïve women with diabetes and obesity: a randomized head-to-head metformin-controlled study. Diabetol. Metab. Syndr. 2019; 11: 70, doi: 10.1186/s13098-019-0466-2.
 
51.
Biesiada G., Krzemień J., Czepiel J., Teległów A., Dąbrowski Z., Spodaryk K. et al. Rheological properties of erythrocytes in patients suffering from erysipelas. Examination with LORCA device. Clin. Hemorheol. Microcirc. 2006; 34(3): 383–390.
 
52.
Czaja B., Gutierrez M., Závodszky G., de Kanter D., Hoekstra A., Eniola-Adefeso O. The influence of red blood cell deformability on hematocrit profiles and platelet margination. PLoS Comput. Biol. 2020; 16(3): e1007716, doi: 10.1371/journal.pcbi.1007716.
 
53.
Semenov A.N., Lugovtsov A.E., Shirshin E.A., Yakimov B.P., Ermolinskiy P.B., Bikmulina P.Y. et al. Assessment of fibrinogen macromolecules interaction with red blood cells membrane by means of laser aggregometry, flow cytometry, and optical tweezers combined with microfluidics. Biomolecules 2020; 10(10): 1448, doi: 10.3390/biom10101448.
 
54.
Shin S., Ku Y., Park M.S., Suh J.S. Deformability of red blood cells: A determinant of blood viscosity. Journal of mechanical science and technology. J. Mech. Sci. Technol. 2005; 19(1): 216–223, doi: 10.1007/BF02916121.
 
55.
Semenov A., Lugovtsov A., Ermolinskiy P., Lee K., Priezzhev A. Problems of red blood cell aggregation and deformation assessed by laser tweezers, diffuse light scattering and laser diffractometry. Photonics 2022; 9(4): 238, doi: 10.3390/photonics9040238.
 
56.
Marcinkowska-Gapińska A., Peryt-Stawiarska S., Kowal P., Niśkiewicz I. Application of computational fluid dynamics to modeling of blood flow in neurology. Neuroskop 2011; 13: 120–123.
 
57.
Wasilewski J., Mirota K., Peryt-Stawiarska S., Nowakowski A., Poloński L., Zembala M. An introduction to computational fluid dynamics based on numerical simulation of pulsatile flow in the left coronary artery. Pol. J. Thorac. Cardiovasc. Surg. 2012; 9(3): 366–374, doi: 10.5114/kitp.2012.30851.
 
58.
Gwoździński K., Pieniążek A., Czepas J., Brzeszczyńska J., Jegier A., Pawlicki L. Cardiac rehabilitation improves the blood plasma properties of cardiac patients. Exp. Biol. Med. 2016; 241(17): 1997–2006, doi: 10.1177/1535370216658143.
 
59.
Szyller-Tracz M., Żakowska I., Jóźwik K. Measurements of fluidity and microviscosity of morphotic elements of patients with an artificial heart valve. Eng. Biomater. 2004; 7(35–36): 56–61.
 
60.
Desouky O.S. Rheological and electrical behavior of erythrocytes in patients with diabetes mellitus. Romanian J. Biophys. 2009; 19(4): 239–250.
 
61.
Jaroszyński W., Kwiatkowski B., Boguś P. Influence of hematocrit on rate and kinetics of human erythrocytes aggregation: dielectric spectroscopy method researches. Ann. Acad. Med. Gedan. 2010; 40: 19–31.
 
62.
Parrow N.L., Violet P.C., Tu H., Nichols J., Pittman C.A., Fitzhugh C. et al. Measuring deformability and red cell heterogeneity in blood by ektacytometry. J. Vis. Exp. 2018; 131: 56910, doi: 10.3791/56910.
 
63.
Słowińska L., Monkos K. Clinical applications of the Laser-assisted Optical Rotational Cell Analyser LORCA. Ann. Acad. Med. Siles. 2010; 64(3–4): 42–47.
 
64.
Ptaszek B., Teległów A., Marchewka J. Impact of systemic cryotherapy on the rheological properties of the blood in women with rheumatoid arthritis. Med. Rehabil. 2017; 21(2): 4–9, doi: 10.5604/01.3001.0010.4815.
 
65.
Kuznetsova P.I., Raskurazhev A.A., Shabalina A.A., Melikhyan A.L., Subortseva I.N., Tanashyan M.M. Red blood cell morphodynamics in patients with polycythemia vera and stroke. Int. J. Mol. Sci. 2022; 23(4): 2247, doi: 10.3390/ijms23042247.
 
66.
Bowers A.S.A., Duncan W.W., Pepple D.J. Erythrocyte aggregation and blood viscosity is similar in homozygous sickle cell disease patients with and without leg ulcers. Int. J. Angiol. 2018; 27(1): 35–38, doi: 10.1055/s-0037-1608901.
 
67.
Lansink-Hartgring A.O., Hoffmann R., van den Bergh W., de Vries A. Changes in red blood cell properties and platelet function during extracorporeal membrane oxygenation. J. Clin. Med. 2020; 9(4): 1168, doi: 10.3390/jcm9041168.
 
68.
Fitzpatrick T., Simmonds M.J., McNamee A.P. Protocol for inspecting blood cell dynamics with a custom ektacytometer-rheometer apparatus. STAR Protoc. 2022; 3(2): 101279, doi: 10.1016/j.xpro.2022.101279.
 
69.
Gal R., Praksch D., Kenyeres P., Rabai M., Toth K., Halmosi R. et al. Hemorheological alterations in patients with heart failure with reduced ejection fraction treated by resveratrol. Cardiovasc. Ther. 2020; 2020: 7262474, doi: 10.1155/2020/7262474.
 
 
CITATIONS (1):
1.
The Efficacy of Extracorporeal Shockwave Therapy Compared with Compression Therapy in Healing Venous Leg Ulcers
Paweł T. Dolibog, Patrycja Dolibog, Beata Bergler-Czop, Sławomir Grzegorczyn, Daria Chmielewska
Journal of Clinical Medicine
 
eISSN:1734-025X
Journals System - logo
Scroll to top