Evaluation of the S-entropy source intensity in a membrane system for concentration polarization conditions
 
More details
Hide details
1
Instytut Nauk o Zdrowiu i Żywieniu, Zakład Procesów i Systemów Biomedycznych, Politechnika Częstochowska
 
2
Katedra i Zakład Biofizyki, Wydział Lekarski z Oddziałem Lekarsko-Dentystycznym w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach
 
 
Corresponding author
Sławomir Marek Grzegorczyn   

Katedra i Zakład Biofizyki, Wydział Lekarski z Oddziałem Lekarsko-Dentystycznym w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach, ul. Jordana 19, 41-808 Zabrze
 
 
Ann. Acad. Med. Siles. 2017;71:46-54
 
KEYWORDS
TOPICS
ABSTRACT
Introduction:
Kedem-Katchalsky thermodynamic formalism (K-K) and Peusner network thermodynamics (PNT) belong to the basic research tools of membrane transport. The production of S-entropy, specifying the rate of change of entropy of the membrane system, is one of the basic values for assessing the irreversibility of mass, energy and momentum transport processes. It is a measure S-entropy intensity.

Material and methods:
A bacterial cellulose membrane (Biofill) with known transport parameters (Lp, σ, ω), for aqueous solutions of glucose was the subject of research. The research methods were K-K and PNT formalisms for binary non-electrolyte solutions.

Results:
On the basis of Onsager linear non-equilibrium thermodynamics and Peusner network thermodynamics, the S-entropy intensity of the membrane was described for non-electrolyte solutions. In this membrane system volume (Jv*) and diffusion (Js*) fluxes are generated by osmotic (Δπ/ ) and hydrostatic (ΔP) forces. The formulas describing the intensity of the S-entropy source for concentration polarization conditions θ*(S) and for solution homogeneity conditions – by θ(S) were derived. In order to show how concentration polarization influences S-entropy intensity, coefficient χ =θ*(S)/θ(S) was calculated. The results of numerical calculations of dependencies θ*(S)=f(∆P,△π/Cśr), θ (S)=f(∆P,△π/Cśr) and χ = f(∆P,△π/Cśr), calculated on the basis of the received mathematical equations by means of Mathcad Prime 3.0, are illustrated graphically in the form of va-rious types of curved surfaces.

Conclusions:
The concentration polarization of the membrane significantly influences the production of entropy in the membrane system by reducing it. For membranes with larger transport coefficient values, entropy production in the membrane system is greater. The influence of concentration polarization on the membrane system is greater for greater ∆P values.
REFERENCES (32)
1.
De Groot S.R., Mazur P. Non-Equilibrium Thermodynamics. Dover, New York 1984.
 
2.
Kondepudi D., Prigogine I. Modern Thermodynamics: from heat engines to dissipative structures. J. Wiley & Sons, Chichester 1998.
 
3.
Kondepudi D. Introduction to Modern Thermodynamics. J. Wiley & Sons, Chichester 2008.
 
4.
Coveney P., Highfield R. The Arrow of Time: the quest to solve science’s setest mystery. W.H. Allen, London 1990.
 
5.
Demirel Y., Sandler S.I. Thermodynamics and bioenergetics. Biophys. Chem. 2002; 97(2–3): 87–111.
 
6.
Van Kampen N.G. Stochastic Processes in Physics and Chemistry. Elsevier, Amsterdam 1981.
 
7.
Katchalsky A., Curran P.F. Nonequilibrium Thermodynamics in Biophysics. Harvard University Press, Cambridge 1965.
 
8.
Klimek R., Kolenda Z. Karcinogenna entropia. Curr. Gynecol. Oncol. 2012; 10(3): 185–193.
 
9.
Demirel Y. Nonequilibrium Thermodynamics: transport and rate pro-cesses in physical and biological system. Elsevier, Amsterdam 2002.
 
10.
Reguera D., Rubi J.M., Vilar J.M.G. The mesoscopic dynamics of thermodynamic systems. J. Phys. Chem. B 2005; 109(46): 21502–21515.
 
11.
Downarowicz T. Entropy in Dynamical Systems. Cambridge Univ. Press. Cambridge 2011.
 
12.
Gray R.M. Entropy and Information Theory. Springer-Verlag, New York 2007.
 
13.
Martyushev L.M., Seleznev V.D. Maximum entropy production principle in physics, chemistry and biology. Physics. Reports 2006; 426(1): 1–45.
 
14.
Onsager L. Reciprocal Relations in Irreversible Processes I. Phys. Rev. 1931; 37: 405–426.
 
15.
Nicolis G., Prigogine I. Self-Organization in Nonequilibrium Systems: from dissipative structures to order through fluctuactions. Wiley-Interscience, New York 1977.
 
16.
Baker R.W. Membrane technology and applications. John Wiley & Sons, New York 2004.
 
17.
Peusner L. Studies in Network Thermodynamics. Elsevier, Amsterdam 1986.
 
18.
Ślęzak A. Termodynamical evaluation of the entropy source in a system containing the two-component membrane dressing. Polim. Med. 2009(4); 39: 69–75.
 
19.
Ślęzak A., Grzegorczyn S., Prochazka B. Osmo-diffusive transport through microbial cellulose membrane: the computer model simulation in 3D graphic of the dissipation energy for various values of membrane permeability parameters. Polim. Med. 2007; 37(3): 47–57.
 
20.
Ślęzak A. Entropy source in the system contained the double-layer polymeric membrane and binary electrolytic solutions. Ann. Acad. Med. Siles. 2008; 62: 21–28.
 
21.
Jasik-Ślęzak J., Bilewicz-Wyrozumska T., Ślęzak A. Practical forms of entropy production for single-membrane system and binary non-electrolyte solutions. Polim. Med. 2006; 36(4): 53–59.
 
22.
Ślęzak A., Ślęzak- Prochazka I., Grzegorczyn S., Jasik-Ślęzak J. Evaluation of S-entropy production in a single-membrane system in concentration polarization conditions. Transp. Porous Media 2017; 116: 941–957.
 
23.
Kucharzewski M., Ślęzak A., Franek A. Topical treatment of non-healing venous leg ulcers by cellulose membrane. Phlebologie 2003; 32: 147–151.
 
24.
Ślęzak A., Grzegorczyn S., Batko K. Resistance coefficients of polimer membrane with concentration polarization. Transp. Porous Med. 2012; 95(1): 151–170.
 
25.
Batko K., Ślęzak-Prochazka I., Grzegorczyn S., Ślęzak A. Membrane transport in concentration polarization conditions: network thermodynamics model equations. J. Porous Media 2014; 17: 573–586.
 
26.
Batko K.M., Ślęzak-Prochazka I., Ślęzak A. Network hybrid form of the Kedem-Katchalsky equations for non-homogenous binary non-electrolyte solutions: evaluation of Pij* Peusner’s tensor coefficients. Transp. Porous Med. 2015; 106: 1–20.
 
27.
Ślęzak-Prochazka I., Batko K.M., Wąsik S., Ślęzak A.H. Peusner’s form of the Kedem-Katchalsky equations for non-homogeneous non-electrolyte binary solutions. Transp. Porous Med. 2016; 111: 457–477.
 
28.
Delmotte M., Chanu J. Non-equilibrium thermodynamics and membrane potential measurement in biology. W: Topics bioelectrochemistry and bioenergetics, G. Millazzo red., John Wiley Publising & Sons, Chichester 1979, s. 307–359.
 
29.
Dworecki K., Wąsik S., Ślęzak A. Temporal and spatial structure of the concentration boundary layers in membrane system. Physica A 2003; 326: 360–369.
 
30.
Dworecki K., Ślęzak A., Ornal-Wąsik B., Wąsik S. Effect of hydrodynamic instabilities on solute transport in a membrane system. J. Membr. Sci. 2005; 265: 94–100.
 
31.
Jasik-Ślęzak J., Olszówka K., Ślęzak A. Estimation of thickness of concentration boundary layers by osmotic volume flux determinantion. Gen. Physiol. Biophys. 2011; 30: 186–195.
 
32.
Ślęzak A., Grzegorczyn S., Jasik-Ślęzak J., Michalska-Małecka K. Natural convection as an asymmetrical factor of the transport through porous membrane. Transp. Porous Med. 2010; 84: 685–698.
 
eISSN:1734-025X
Journals System - logo
Scroll to top