Concentration of neutrophil gelatinase-associated lipocalin (NGAL) in serum obtained from different vascular areas during surgical repair of abdominal aortic aneurysm
More details
Hide details
Klinika Chorób Wewnętrznych i Metabolicznych, Wydział Nauk o Zdrowiu w Katowicach, Śląski Uniwersytet Medyczny w Katowicach
Katedra i Klinika Chirurgii Ogólnej, Naczyń, Angiologii i Flebologii, Wydział Lekarski w Katowicach, Śląski Uniwersytet Medyczny w Katowicach
Oddział Chirurgii Onkologicznej z Pododdziałem Chirurgii Naczyniowej, Katowickie Centrum Onkologii
Leszek Kędzierski   

Klinika Chorób Wewnętrznych i Metabolicznych, Górnośląskie Centrum Medyczne im. prof. Leszka Gieca, Śląski Uniwersytet Medyczny w Katowicach, ul. Ziołowa 45/47, 40-635 Katowice
Ann. Acad. Med. Siles. 2019;73:89–95
Neutrophil gelatinase-associated lipocalin (NGAL) is a secretory protein found in neutrophils, endothelial cells and in various organs of the gastrointestinal, respiratory, excretory and reproductive systems. NGAL, involved in inflammatory processes in cells, is regarded to be the early indicator of renal dysfunction. The surgical repair of an abdominal aortic aneurysm (AAA) is a research model of acute kidney injury. There is iatrogenic kidney injury during that intervention. The surgical technique allows the blood from various vascular areas to be collected.

Material and methods:
The study group consisted of 21 patients with AAA who were planned to undergo surgical treatment. The serum concentration of NGAL was determined in blood: from a peripheral vein before surgery, just before removal of the aortic clamp, 5 minutes after removal of the aortic clamp; from the renal vein prior to aorta clamping, just before removal of the aortic clamp, 5 minutes after removal of the aortic clamp; from the inferior vena cava just before removal of the aortic clamp.

The serum concentration of NGAL in the samples obtained from the peripheral vein significantly increased after the surgery. Just before removal of the aortic clamp, a significantly higher concentration of NGAL was found in the serum obtained from the inferior vena cava compared to the renal vein.

The increase in serum concentration of NGAL after surgical repair of AAA mainly results from a greater inflow of this cytokine into the systemic circulation from vascular areas of the lower part of body, which is ischemic due to the aortic clamp.

Mishra J., Ma Q., Prada A., Mitsnefes M., Zahedi K., Yang J., Barasch J., Devarajan P. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J. Am. Soc. Nephrol. 2003; 14(10): 2534–2543.
Coles M., Diercks T., Muehlenweg B., Bartsch S., Zölzer V., Tschesche H., Kessler H. The solution structure and dynamics of human neutrophil gelatinase-associated lipocalin. J. Mol. Biol. 1999; 289(1): 139–157.
Mori K., Lee H.T., Rapoport D., Drexler I.R., Foster K., Yang J., Schmidt-Ott K.M., Chen X., Li J.Y., Weiss S., Mishra J. i wsp. Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J. Clin. Invest. 2005; 115(3): 610–621.
Flower D.R. The lipocalin protein family: structure and function. Biochem. J. 1996; 318(Pt 1): 1–14.
Xu S., Venge P. Lipocalins as biochemical markers of disease. Biochim. Biophys. Acta 2000; 1482(1–2): 298–307.
Schmidt-Ott K.M., Mori K., Kalandadze A., Li J.Y., Paragas N., Nicholas T., Devarajan P., Barasch J. Neutrophil gelatinase-associated lipocalin-mediated iron traffic in kidney epithelia. Curr. Opin. Nephrol. Hypertens. 2006; 15(4): 442–449.
Chakraborty S., Kaur S., Guha S., Batra S.K. The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochim. Biophys. Acta 2012; 1826(1): 129–169, doi: 10.1016/j.bbcan.2012.03.008.
Marchewka Z. Low molecular weight biomarkers in the nephrotoxicity. Adv. Clin. Exp. Med. 2006; 15(6): 1129–1138.
Schrier R.W., Wang W., Poole B., Mitra A. Acute renal failure: definitions, diagnosis, pathogenesis, and therapy. J. Clin. Invest. 2004; 114(1): 5–14.
Siegel N.J., Shah S.V. Acute renal failure: directions for the next decade. J. Am. Soc. Nephrol. 2003; 14(8): 2176–2177.
Hyla-Klekot L., Kokot F. Biomarkery uszkodzenia nerek. Post. Nauk Med. 2009; 1: 28–33.
Coca S.G., Parikh C.R. Urinary biomarkers for acute kidney injury: perspectives on translation. Clin. J. Am. Soc. Nephrol. 2008; 3(2): 481–490, doi: 10.2215/CJN.03520807.
Świętochowska A., Małyszko J. Ostre uszkodzenie nerek (ONN) wczoraj, dziś, jutro... Nephrol. Dial. Pol. 2012; 16: 98–105.
Erbel R., Aboyans V., Boileau C., Bossone E., Di Bartolomeo R., Eggebrecht H., Evangelista A., Falk V., Frank H., Gaemperli O., Grabenwöger M. i wsp. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases. Kardiol. Pol. 2014; 72(12): 1169–1252, doi: 10.5603/KP.2014.0225.
Golledge J., Muller J., Daugherty A., Norman P. Abdominal aortic aneurysm: pathogenesis and implications for management. Arterioscler. Thromb. Vasc. Biol. 2006; 26(12): 2605–2613.
Dubost C., Allary M., Oeconomos N. Resection of an aneurysm of the abdominal aorta: reestablishment of the continuity by a preserved human arterial graft, with result after five months. AMA Arch. Surg. 1952; 64(3): 405–408.
Hagivara S., Saima S., Negishi K., Takeda R., Miyauchi N., Akiyama Y., Horikoshi S., Tomino Y. High incidence of renal failure in patients with aortic aneurysms. Nephrol. Dial. Transplant. 2007; 22(5): 1361–1368.
Paulsson J., Dadfar E., Held C., Jacobson S.H., Lundahl J. Activation of peripheral and in vivo transmigrated neutrophils in patients with stable coronary artery disease. Atherosclerosis 2007; 192(2): 328–334.
Swedenborg J., Eriksson P. The intraluminal thrombus as a source of proteolytic activity. Ann. N. Y. Acad. Sci. 2006; 1085: 133–138.
Devarajan P. Review: neutrophil gelatinase-associated lipocalin: a troponin-like biomarker for human acute kidney injury. Nephrology (Carlton) 2010; 15(4): 419–428, doi: 10.1111/j.1440-1797.2010.01317.x.
Akcay A., Nguyen Q., Edelstein C.L. Mediators of inflammation in acute kidney injury. Mediators Inflamm. 2009; 2009: 137072, doi: 10.1155/2009/137072.
Cowland J.B., Borregaard N. Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase-associated lipocalin from humans. Genomics 1997; 45(1): 17–23.
Cai L., Rubin J., Han W., Venge P., Xu S. The origin of multiple molecular forms in urine of HNL/NGAL. Clin. J. Am. Soc. Nephrol. 2010; 5(12): 2229–2235, doi: 10.2215/CJN.00980110.
Mishra J., Dent C., Tarabishi R., Mitsnefes M.M., Ma Q., Kelly C., Ruff S.M., Zahedi K., Shao M., Bean J., Mori K. i wsp. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 2005; 365(9466): 1231–1238.
Rosner M.H., Okusa M.D. Acute kidney injury associated with cardiac surgery. Clin. J. Am. Soc. Nephrol. 2006; 1(1): 19–32.
Wagener G., Jan M., Kim M., Mori K., Barasch J.M., Sladen R.N., Lee H.T. Association between increases in urinary neutrophil gelatinase-associated lipocalin and acute renal dysfunction after adult cardiac surgery. Anesthesiology 2006; 105(3): 485–491.