The share of pathogenic strains of Gram (-) along with profiles of drug resistance occurring in bacterial infections in patients hospitalized in Department of Lung Diseases and Tuberculosis in Zabrze, Medical University of Silesia in Katowice
 
More details
Hide details
1
Katedra i Zakład Mikrobiologii i Immunologii, Wydział Lekarski z Oddziałem Lekarsko-Dentystycznym w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach
 
2
Katedra i Klinika Chorób Płuc i Gruźlicy, Wydział Lekarski z Oddziałem Lekarsko-Dentystycznym w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach
 
 
Corresponding author
Bogdan Mazur   

Katedra i Zakład Mikrobiologii i Immunologii, Wydział Lekarski z Oddziałem Lekarsko-Dentystycznym w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach, ul. Jordana 19, 41-808 Zabrze
 
 
Ann. Acad. Med. Siles. 2019;73:81-88
 
KEYWORDS
TOPICS
ABSTRACT
Introduction:
Respiratory infections still pose a threat to human life and health. Recurrent inflammations of the respiratory tract are a very important problem because of the complex causes of their formation. In recurrent infections, many chronic diseases are diagnosed too late because of the large diversity and variability of clinical symptoms. Bacterial infections are among the causes of a number of exacerbations of obstructive respiratory diseases. In the hospital, infections of the respiratory system are dominated by Gram (-) rod-shaped bacteria Escherichia coli, Klebsiella pneumoniae, Enterobacter spp., Pseudomonas aeruginosa, Acinetobacter spp. These microorganisms isolated from infections are increasingly characterized by resistance to most, and sometimes all, available drugs. The aim of the study was to assess the species of Gram (-) rod-shaped bacteria, their number and profile of drug resistance cultured from patients in the Department of Lung Diseases and Tuberculosis of the Independent Public Clinical Hospital No. 3 in Zabrze in 2008–2012.

Material and methods:
We evaluated the results of bacteriological tests of sputum and bronchial lavage obtained in the Microbiological Laboratory of the Department of Microbiology and Immunology in Zabrze, Medical University of Silesia in Katowice. In a period of 5 years, 3810 studies of bronchial lavage and sputum were conducted.

Results:
1263 strains of pathogenic bacteria were bred, including 818 strains of Gram (-) bacilli, which accounted for 64.8% of the total number of pathogenic bacteria. Gram (-) microorganisms in 2008–2012 showed the highest percentage of resistance in relation to tetracyclines, then to penicillin and penicillin with inhibitors, sulfonamides and trimethoprim, and secondarily to cephalosporins, quinolones and aminoglycosides.
REFERENCES (30)
1.
Murray P.R., Rosenthal K.S., Pfaller M.A. Mikrobiologia. Elservier Urban & Partner. Wrocław 2011: 9–175.
 
2.
Płusa T. Zakażenia układu oddechowego – klinika a bakteriologia. Nowa Med. 2009; 2: 109–112.
 
3.
Brown J. Pneumonia in the Non-HIV immunocompromised host. In: Clinical respiratory medicine. Eds. R.K. Albert, S.G. Spiro, J.R. Jett. 3rd ed. Mosby Elsevier. Philadelphia 2008: 365–378.
 
4.
Grochowalska A., Kozioł-Montewka M., Sobieszczańska A. Analysis of Acinetobacter baumannii resistance patterns in patients with chronic obstructive pulmonary disease (COPD) in terms of choice of effective empiric antibiotic therapy. Ann. Agric. Environ. Med. 2017; 24(2): 307–311, doi: 10.26444/aaem/74710.
 
5.
Balczon R., Morrow K.A., Zhou C., Edmonds B., Alexeyev M., Pittet J.F., Wagener B.M., Moser S.A., Leavesley S., Zha X., Frank D.W., Stevens T. Pseudomonas aeruginosa infection liberates transmissible, cytotoxic prion amyloids. FASEB J. 2017; 31(7): 2785–2796, doi: 10.1096/fj.201601042RR.
 
6.
Płusa T. Charakterystyka patogenów odpowiedzialnych za zakażenia układu oddechowego. Lekarz 2012; 1: 36–42.
 
7.
Tyczkowska-Sieron R., Bartoszko-Tyczkowska A., Gaszynski W. Bacterial infections in Intensive Care Unit patients analyzed on the example of the Lodz Medical University Hospital No 1 in the period 2002–2015. Med. Dosw. Mikrobiol. 2016; 68(1): 39–46.
 
8.
Grubek-Jaworska H. Współczesne możliwości diagnostyczne zakażeń układu oddechowego. Int. Rev. Allergol. Clin. Immunol. Family Med. 2012; 18: 127–134.
 
9.
Gładysz A., Fleischer-Stępniewska K. Renesans chorób zakaźnych. Pol. Merk. Lek. 2011; 30(179): 313–315.
 
10.
Alamoudi O.S. Bacterial infection and risk factors in outpatients with acute exacerbation of chronic obstructive pulmonary disease: a 2-year prospective study. Respirology 2007; 12(2): 283–287.
 
11.
Erkan L., Uzun O., Findik S., Katar D., Sanic A., Atici A.G. Role of bacteria in acute exacerbations of chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2008; 3(3): 463–467.
 
12.
Sethi S., Timothy F., Murphy T.F. Infection in the pathogenesis and course of chronic obstructive pulmonary disease. N. Engl. J. Med. 2008; 359(22): 2355–2365, doi: 10.1056/NEJMra0800353.
 
13.
Byun M.K., Chang J., Kim H.J., Jeong S.H. Differences of lung microbiome in patients with clinically stable and exacerbated bronchiectasis. PLoS One 2017; 12(8): e0183553, doi: 10.1371/journal.pone.0183553.
 
14.
Lanoix J.P., Pluquet E., Lescure F.X., Bentayeb H., Lecuyer E., Boutemy M., Dumont P., Jounieaux V., Schmit J.L., Dayen C., Douadi Y. Bacterial infection profiles in lung cancer patients with febrile neutropenia. BMC Infect. Dis. 2011; 11: 183, doi: 10.1186/1471-2334-11-183.
 
15.
Yamada Y., Sekine Y., Suzuki H., Iwata T., Chiyo M., Nakajima T., Yasufuku K., Yoshida S. Trends of bacterial colonisation and the risk of postoperative pneumonia in lung cancer patients with chronic obstructive pulmonary disease. Eur. J. Cardiothorac. Surg. 2010; 37(4): 752–757, doi: 10.1016/j.ejcts.2009.05.039.
 
16.
Laroumagne S., Salinas-Pineda A., Hermant C., Murris M., Gourraud P.A., Do C., Segonds C., Didier A., Mazières J. Incidence and characteristics of bronchial colonisation in patient with lung cancer: a retrospective study of 388 cases. Rev. Mal. Respir. 2011; 28(3): 328–335, doi: 10.1016/j.rmr.2010.05.020.
 
17.
Fatima A., Naqvi S.B., Khaliq S.A., Perveen S., Jabeen S. Antimicrobial susceptibility pattern of clinical isolates of Pseudomonas aeruginosa isolated from patients of lower respiratory tract infections. Springerplus 2012; 1(1): 70, doi: 10.1186/2193-1801-1-70.
 
18.
Qadeer A., Akhtar A., Ain Q.U., Saadat S., Mansoor S., Assad S., Ishtiaq W., Ilyas A., Khan A.Y., Ajam Y. Antibiogram of Medical Intensive Care Unit at Tertiary Care Hospital Setting of Pakistan. Cureus 2016; 8(9): e809.
 
19.
Laroumagne S., Lepage B., Hermant C., Plat G., Phelippeau M., Bigay-Game L., Lozano S., Guibert N., Segonds C., Mallard V., Augustin N., Didier A., Mazieres J. Bronchial colonisation in patients with lung cancer: a prospective study. Eur. Respir. J. 2013; 42(1): 220–229, doi: 10.1183/09031936.00062212.
 
20.
Paluchowska P., Skałkowska M., Spelak A., Budak A. Występowanie patogenów alarmowych w środowisku szpitalnym. Część I. Pałeczki z rodziny Enterobacteriaceae wytwarzające ß-laktamazy ESBL. Med. Dośw. Mikrobiol. 2012; 64: 35–43.
 
21.
Paluchowska P., Skałkowska M., Spelak A., Budak A. Występowanie patogenów alarmowych w środowisku szpitalnym. Część II. Wielolekooporne pałeczki niefermentujące. Med. Dośw. Mikrobiol. 2012; 64: 45–53.
 
22.
Behroozi A., Rahbar M., Yousefi J.V. Frequency of extended spectrum beta-lactamase (ESBLs) producing Escherichia coli and Klebsiella pneumoniae isolated from urine in an Iranian 1000-bed tertiary care hospital. Afr. J. Microbiol. Res. 2010; 4(9): 881–884.
 
23.
Yayan J., Ghebremedhin B., Rasche K. Cefepime shows good efficacy and no antibiotic resistance in pneumonia caused by Serratia marcescens and Proteus mirabilis – an observational study. BMC Pharmacol. Toxicol. 2016; 17: 10, doi: 10.1186/s40360-016-0056-y.
 
24.
Prakash S.K., Arora V., Prashad R., Sharma V.K. In vitro activity of ceftriaxone plus tazobactam against members of Enterobacteriaceae. J. Assoc. Physicians India 2005; 53: 595–598.
 
25.
Rajpurohit H., Vinay Kumar B.M., Sharadamma K.C., Radhakrishna P.M. In-vitro activity of ceftriaxone in combination with sulbactam and tazobactam against Escherichia coli. Int. J. Pharm. Bio. Sci. 2011; 1(4): 545–550.
 
26.
Ahmed S.M., Jakribettu R.P., Meletath S.K., Arya B., Shakir V.P.A. Lower respiratory tract infections (LTRIs): An insight into the prevalence and the antibiogram of the gram negative, respiratory, bacterial agents. J. Clin. Diagn. Res. 2013; 7(2): 253–256, doi: 10.7860/JCDR/2013/5308.2740.
 
27.
Olugbue V., Onuoha S. Prevalence and antibiotic sensitivity of bacterial agents involved in lower respiratory tract infections. Int. J. Biol. Chem. Sci. 2011; 5(2): 774–781.
 
28.
Kaul S., Brahmadathan K.N., Jagannati M., Sudarsanam T.D., Pitchamuthu K., Abraham O.C., John G. One year trends in the gram-negative bacterial antibiotic susceptibility patterns in a medical intensive care unit in South India. Indian J. Med. Microbiol. 2007; 25(3): 230–235.
 
29.
Akingbade O.A., Ogiogwa J.I., Okerentugba P.O, Innocent-Adiele H.C., Onoh C.C., Nwanze J.C., Okonko I.O. Prevalence and antibiotic susceptibility pattern of bacterial agents involved in lower respiratory tract infections in Abeokuta, Ogun State, Nigeria. Rep. Opin. 2012; 4(5): 25–30.
 
30.
Goel N., Chaudhary U., Aggarwal R., Bala K. Antibiotic sensitivity pattern of gram negative bacilli isolated from the lower respiratory tract of ventilated patients in the intensive care unit. Indian J. Crit. Care Med. 2009; 13(3): 148–151, doi: 10.4103/0972-5229.58540.
 
eISSN:1734-025X
Journals System - logo
Scroll to top