Evaluation of usefulness of modern echocardiographic techniques using speckle tracking echocardiography, in experimental laboratory conditions, on example model of acute ischemic disease in mice
 
More details
Hide details
1
Katedra i Oddział Kliniczny Kardiochirurgii, Transplantologii, Chirurgii Naczyniowej i Endowaskularnej, Wydział Lekarski z Oddziałem Lekarsko-Dentystycznym w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach
 
2
Studenckie Koło Naukowe przy Katedrze i Oddziale Klinicznym Kardiochirurgii, Transplantologii, Chirurgii Naczyniowej i Endowaskularnej, Wydział Lekarski z Oddziałem Lekarsko-Dentystycznym w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach
 
 
Corresponding author
Marcin Adam Garbacz   

Katedra i Oddział Kliniczny Kardiochirurgii, Transplantologii, Chirurgii Naczyniowej i Endowaskularnej, Wydział Lekarski z Oddziałem Lekarsko-Dentystycznym w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach, Śląskie Centrum Chorób Serca, ul. M. Curie-Skłodowskiej 9, 41-800 Zabrze
 
 
Ann. Acad. Med. Siles. 2018;72:172-183
 
KEYWORDS
TOPICS
ABSTRACT
In recent years, mice have become the most commonly used laboratory animals in preclinical studies. With the increase in their use also in the study of the cardiovascular system (in heart muscle cell regenerating therapies after a heart attack, heart failure or assessing the cardiotoxicity of drugs), there was a need to develop accurate methods for assessing cardiac function, which could reliably determine the efficacy and safety of the studied treatments. The transfer of speckle tracking technology to echocardiography experimental conditions, allows a more reliable and credible assessment of the effectiveness of the studied treatments. Measurements of regional deformation of the heart obtained by this method are much more sensitive and specific than the parameters of classical echocardiography. Speckle tracking echocardiography (STE) seems to be a very attractive method but it is not devoid of drawbacks and limitations. Analysis of the 2D STE technique is very sensitive to artifacts, blurring the boundaries that prevent proper endocarditis tracking speckle. Therefore, obtaining reproducible images of good quality is still a major challenge, particularly in experimental echocardiography. In the available literature, the technical and practical aspects of this study are often overlooked or described very enigmatically, and often it is those aspects that are essential to achieve satisfactory images. Therefore, the aim of this study is to evaluate the usefulness of both modern echocardiographic techniques in experimental conditions in the laboratory and to describe the technical and practical issues of conducting echocardiography in mice.
 
REFERENCES (28)
1.
Ahn D., Cheng L., Moon C., Spurgeon H., Lakatta E.G., Talan M.I. Induction of myocardial infarcts of a predictable size and location by branch pattern probability-assisted coronary ligation in C57BL/6 mice. Am. J. Physiol. Heart Circ. Physiol. 2004; 286(3): H1201–1207, doi: 10.1152/ajpheart.00862.2003.
 
2.
Bayat H., Swaney J.S., Ander A.N., Dalton N., Kennedy B.P., Hammond H.K., Roth D.M. Progressive heart failure after myocardial infarction in mice. Basic Res. Cardiol. 2002; 97(3): 206–213.
 
3.
Śliwka J., Kumaszka B., Garbacz M., Pakuło S., Nowak K., Domagała M., Jaźwiec T., Zandecki M., Cichoń T., Nożyński J., Smolarczyk R, Szala S., Zembala M., Zembala M. Zawał mięśnia sercowego u myszy – jak stworzyć dobrze funkcjonujący model doświadczalny. Kardiochir. Torakochir. Pol. 2012; 9(2): 243–251.
 
4.
Baumans V. Use of animals in experimental research: an ethical dilemma? Gene Ther. 2004; 11(S1): S64–66, doi: 10.1038/sj.gt.3302371.
 
5.
Lutgens E., Daemen M.J., de Muinck E.D., Debets J., Leenders P., Smits J.F. Chronic myocardial infarction in the mouse: cardiac structural and functional changes. Cardiovasc. Res. 1999; 41(3): 586–593.
 
6.
Patten R.D., Aronovitz M.J., Deras-Mejia L., Pandian N.G., Hanak G.G., Smith J.J., Mendelsohn M.E., Konstam M.A. Ventricular remodeling in a mouse model of myocardial infarction. Am. J. Physiol. 1998; 274(5 Pt 2): H1812–1820.
 
7.
Takagawa J., Zhang Y., Wong M.L., Sievers R.E., Kapasi N.K., Wang Y., Yeghiazarians Y., Lee R.J., Grossman W., Springer M.L. Myocardial infarct size measurement in the mouse chronic infarction model: comparison of area- and length-based approaches. J. Appl. Physiol. Bethesda. Md. 1985. 2007; 102(6): 2104–2111, doi: 10.1152/japplphysiol.00033.2007.
 
8.
Perk G., Tunick P.A., Kronzon I. Non-Doppler two-dimensional strain imaging by echocardiography--from technical considerations to clinical applications. J. Am. Soc. Echocardiogr. 2007; 20(3): 234–243, doi: 10.1016/j.echo.2006.08.023.
 
9.
Blessberger H., Binder T. Two dimensional speckle tracking echocardiography: basic principles. Heart 2010; 96(9): 716–722, doi: 10.1136/hrt.2007.141002.
 
10.
Dandel M., Lehmkuhl H., Knosalla C., Suramelashvili N., Hetzer R. Strain and Strain Rate Imaging by Echocardiography – Basic Concepts and Clinical Applicability. Curr. Cardiol. Rev. 2009; 5(2): 133–148, doi: 10.2174/157340309788166642.
 
11.
Kang S.J., Lim H.S., Choi B.J., Choi S.Y., Hwang G.S., Yoon M.H., Tahk S.J., Shin J.H. Longitudinal strain and torsion assessed by two-dimensional speckle tracking correlate with the serum level of tissue inhibitor of matrix metalloproteinase-1, a marker of myocardial fibrosis, in patients with hypertension. J. Am. Soc. Echocardiogr. 2008; 21(8): 907–911, doi: 10.1016/j.echo.2008.01.015.
 
12.
Ng A.C., Delgado V., Bertini M., van der Meer R.W., Rijzewijk L.J., Shanks M., Nucifora G., Smit J.W., Diamant M., Romijn J.A., de Roos A., Leung D.Y., Lamb H.J., Bax J.J. Findings from left ventricular strain and strain rate imaging in asymptomatic patients with type 2 diabetes mellitus. Am. J. Cardiol. 2009; 104(10): 1398–1401, doi: 10.1016/j.amjcard.2009.06.063.
 
13.
Choi J.O., Cho S.W., Song Y.B., Cho S.J., Song B.G., Lee S.C., Park S.W. Longitudinal 2D strain at rest predicts the presence of left main and three vessel coronary artery disease in patients without regional wall motion abnormality. Eur. J. Echocardiogr. 2009; 10(5): 695–701, doi: 10.1093/ejechocard/jep041.
 
14.
Mondillo S., Galderisi M., Mele D., Cameli M., Lomoriello V.S., Zacà V., Ballo P., D'Andrea A., Muraru D., Losi M., Agricola E., D'Errico A., Buralli S., Sciomer S., Nistri S., Badano L. Speckle-tracking echocardiography: a new technique for assessing myocardial function. J. Ultrasound Med. 2011; 30(1): 71–83.
 
15.
Götte M.J., Germans T., Rüssel I.K., Zwanenburg J.J., Marcus J.T., van Rossum A.C., van Veldhuisen D.J. Myocardial strain and torsion quantified by cardiovascular magnetic resonance tissue tagging: studies in normal and impaired left ventricular function. J. Am. Coll. Cardiol. 2006; 48(10): 2002–2011, doi: 10.1016/j.jacc.2006.07.048.
 
16.
Amundsen B.H., Helle-Valle T., Edvardsen T., Torp H., Crosby J., Lyseggen E., Støylen A., I ., Lima J.A., Smiseth O.A., Slørdahl S.A. Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J. Am. Coll. Cardiol. 2006; 47(4): 789–793, doi: 10.1016/j.jacc.2005.10.040.
 
17.
Kylmälä M.M., Antila M.K., Kivistö S.M., Lauerma K., Vesterinen P.H., Hänninen H.A., Toivonen L., Laine M.K. Tissue Doppler strain-mapping in the assessment of the extent of chronic myocardial infarction: validation using magnetic resonance imaging. Eur. J. Echocardiogr. 2008; 9(5): 678–684, doi: 10.1093/ejechocard/jen127.
 
18.
Hoit B.D. Echocardiographic characterization of the cardiovascular phenotype in rodent models. Toxicol. Pathol. 2006; 34(1): 105–110, doi: 10.1080/01926230500369535.
 
19.
Borg A.N., Ray S.G. A unifying framework for understanding heart failure? Response to “Left Ventricular Torsion By Two-Dimensional Speckle Tracking Echocardiography in Patients With Diastolic Dysfunction and Normal Ejection Fraction” by Park SJ et al. J. Am. Soc. Echocardiogr. 2009; 22(3): 318–320; 321–322, doi: 10.1016/j.echo.2008.11.026.
 
20.
Cottrell C., Kirkpatrick J.N. Echocardiographic strain imaging and its use in the clinical setting. Expert Rev. Cardiovasc. Ther. 2010; 8(1): 93–102.
 
21.
Hurlburt H.M., Aurigemma G.P., Hill J.C., Narayanan A., Gaasch W.H., Vinch C.S., Meyer T.E., Tighe D.A. Direct ultrasound measurement of longitudinal, circumferential, and radial strain using 2-dimensional strain imaging in normal adults. Echocardiography 2007; 24(7): 723–731, doi: 10.1111/j.1540-8175.2007.00460.x.
 
22.
Marwick T.H., Leano R.L., Brown J., Sun J.P., Hoffmann R., Lysyansky P., Becker M., Thomas J.D. Myocardial strain measurement with 2-dimensional speckle-tracking echocardiography: definition of normal range. JACC Cardiovasc. Imaging 2009; 2(1): 80–84, doi: 10.1016/j.jcmg.2007.12.007.
 
23.
Lipiec P., Szymczyk E., Michalski B., Stefańczyk L., Woźniakowski B., Rotkiewicz A., Szymczyk K., Kasprzak J.D. Echokardiograficzna ocena żywotności mięśnia sercowego w spoczynku techniką śledzenia markerów akustycznych – porównanie z echokardiografią obciążeniową. Pol. Prz. Kardiol. 2010; 12(4): 281–286.
 
24.
Hoffmann R., Lethen H., Marwick T., Arnese M., Fioretti P., Pingitore A., Picano E., Buck T., Erbel R., Flachskampf F.A., Hanrath P. Analysis of interinstitutional observer agreement in interpretation of dobutamine stress echocardiograms. J. Am. Coll. Cardiol. 1996; 27(2): 330–336.
 
25.
Kvitting J.P., Wigström L., Strotmann J.M., Sutherland G.R. How accurate is visual assessment of synchronicity in myocardial motion? An In vitro study with computer-simulated regional delay in myocardial motion: clinical implications for rest and stress echocardiography studies. J. Am. Soc. Echocardiogr. 1999; 12(9): 698–705.
 
26.
van Dalen B.M., Soliman O.I., Vletter W.B., Kauer F., van der Zwaan H.B., ten Cate F.J., Geleijnse M.L. Feasibility and reproducibility of left ventricular rotation parameters measured by speckle tracking echocardiography. Eur. J. Echocardiogr. 2009; 10(5): 669–676, doi: 10.1093/ejechocard/jep036.
 
27.
Yoldas A., Ozmen E., Ozdemir V. Macroscopic description of the coronary arteries in Swiss albino mice (Mus musculus). J. S. Afr. Vet. Assoc. 2010; 81(4): 247–252.
 
28.
Pachon R.E., Scharf B.A., Vatner D.E., Vatner S.F. Best anesthetics for assessing left ventricular systolic function by echocardiography in mice. Am. J. Physiol. Heart Circ. Physiol. 2015; 308(12): H1525–1529, doi: 10.1152/ajpheart.00890.2014.
 
eISSN:1734-025X
Journals System - logo
Scroll to top