Protective effect of phytic acid on linoleic acid peroxidation in vitro
 
More details
Hide details
1
Katedra i Zakład Biofarmacji Wydziału Farmaceutycznego z Oddziałem Medycyny Laboratoryjnej SUM w Katowicach
 
2
Katedra i Zakład Biochemii Wydziału Farmaceutycznego z Oddziałem Medycyny Laboratoryjnej SUM w Katowicach
 
 
Corresponding author
Alicja Zajdel   

Katedra i Zakład Biofarmacji, 41-200 Sosnowiec, ul. Narcyzów 1; tel. 32 364 10 63
 
 
Ann. Acad. Med. Siles. 2009;63:7-16
 
KEYWORDS
ABSTRACT
Background:
Free radical processes are known to induce oxidative damage in biomolecules and thus, play an important role in the etiology of a number of diseases including cancer. Phytic acid (myo-inositol hexaphosphate, IP6) is a naturally occurring carbohydrate widely found in fi berrich foods and also contained in almost all mammalian cells. This compound demonstrates various biological activities. The aim of this study was to clarify whether phytic acid possesses the ability to inhibit autooxidation and Fe(II)/ascorbate-induced peroxidation of linoleic acid, to scavenge of hydrogen peroxide, and chelate ferrous ions.

Material and Methods:
The antioxidant properties of the IP6 at various concentrations (1-500 μM) have been evaluated by using the assays based on hydrogen peroxide scavenging and ferrous metal ions chelating activity determination. The eff ect of IP6 (1-500 μM) on autooxidation and Fe(II)/ascorbate-induced lipid peroxidation in micelles of linoleic acid after 24 h incubation was investigated using a reverse-phase high-performance liquid chromatography (RP-HPLC) with UV detection.

Results:
The Fe(II) chelating eff ects of IP6 were concentration-dependent. IP6 exhibited 11,9%, 58,6%, 69,3%, 87,1% of ferrous ions chelation at 10 μM, 50 μM, 100 μM, 500 μȂ , respectively. IP6 at 100 μM and 500 μM eff ectively inhibited the disappearance of linoleic acid, both in the absence and the presence of Fe(II)/ascorbate. The inhibitory effect of IP6 on Fe(II)/ascorbate-induced lipid peroxidation was lower due to its direct interaction with Fe(II) ions. In the absence of Fe(II)/ascorbate, IP6 at 100 μM and 500 μM signifi cantly suppressed decomposition of linoleic acid hydroperoxides. It was incapable of scavenging of hydrogen peroxide

Conclusions:
IP6 can act as a natural antioxidant in vitro. The obtained results suggest that it can play an important role in modulating lipid hydroperoxide level in biological systems.

REFERENCES (34)
1.
Halliwell B., Gutteridge J.M.C. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 1990; 186: 1-85.
 
2.
Halliwell B. Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am. J. Med. 1991; 91: 14-22.
 
3.
Rice-Evans C., Burdon R. Free radicallipid interaction and their pathological consequences. Prog. Lipid Res. 1993; 32: 71-110.
 
4.
Esterbauer H., Schaur R.J., Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 1991; 11: 81-128.
 
5.
Comporti M. Lipid peroxidation and biogenic aldehydes: from the identifi cation of 4-hydroxynonenal to further achievements in biopathology. Free Radic. Res. 1998; 28: 623-635.
 
6.
Graf E., Eaton J.W. Dietary suppression of colonic cancer. Fiber or phytate? Cancer 1985; 56: 717–718.
 
7.
Vucenik I., Shamsuddin A.M. Cancer inhibition by inositol hexaphosphate (IP6) and inositol: from labolatory to clinic. J. Nutr. 2003; 133: 3778-3784.
 
8.
Muraoka S., Miura T. Inhibition of xanthine oxidase by phytic acid and its antioxidative action. Life Sci. 2004; 74: 1691- 1700.
 
9.
Liao J., Seril D.N., Yang A.L., Lu G.G., Yang G.G. Inhibition of chronic ulcerative colitis associated adenocarcinoma development in mice by inositol compounds Carcinogenesis 2007; 28: 446-454.
 
10.
Gulcin I. Antioxidant and antiradical activities of L-carnitine. Life Sci. 2006; 78: 803–811.
 
11.
Graf E., Mahoney J.R., Bryant R.G., Eaton J.W. Iron-catalyzed hydroxyl radical formation. Stringent requirement for free iron coordination site. J. Biol. Chem. 1984; 259: 3620–3624.
 
12.
Graf E., Empson K.L., Eaton J.W. Phytic acid. A natural antioxidant. J. Biol. Chem. 1987; 262: 11647–11650.
 
13.
Rimbach G., Pallauf J. Phytic acid inhibits free radical formation in vitro but does not aff ect liver oxidant or antioxidant status in growing rats. J. Nutr. 1998; 128: 1950–1955.
 
14.
Midorikawa K., Murata M., Oikawa S., Hiraku Y., Kawanishi S. Protective eff ect of phytic acid on oxidative DNA damage with reference to cancer chemoprevention. Biochem. Biophys. Res. Commun. 2001; 288: 552–557.
 
15.
Phillippy B.Q., Graf E. Antioxidant functions of inositol 1,2,3-trisphosphate and inositol 1,2,3,6-tetrakisphosphate. Free Radic. Biol. Med. 1997; 22: 939–946.
 
16.
Miyamoto S., Kuwata G., Imai M., Nagao A., Terao J. Protective eff ect of phytic acid hydrolysis products on iron-induced lipid peroxidation of liposomal membranes. Lipids 2000; 35: 1411-1413.
 
17.
Bucher J.R., Tien M., Aust S.D. The requirement for ferric in the initiation of lipid peroxidation by chelated ferrous iron. Biochem. Biophys. Res. Commun. 1983; 111: 777-784.
 
18.
Minotti G., Aust S.D. The requirement for iron (III) in the initiation of lipid peroxidation by iron (II) and hydrogen peroxide. J. Biol. Chem. 1987; 262: 1098-1104.
 
19.
Minotti G., Aust S.D. Redox cycling of iron and lipid peroxidation. Lipids 1992; 27: 219-226.
 
20.
Girotti AW. Mechanisms of lipid peroxidation. Free Radic. Biol. Med. 1985; 1: 87-95.
 
21.
Spiteller P, Spiteller G. Strong dependence of the lipid peroxidation product spectrum whether Fe+2 /O2 in used as oxidant. Biochim. Biophys. Acta 1998; 1392: 23-40.
 
22.
Kosugi H., Kikugawa K. Potential thiobarbituric acid- reactive substances in peroxidized lipids. Free Radic. Biol. Med. 1989; 7: 205-207.
 
23.
Zajdel A., Parfi niewicz B., Wilczok A., Węglarz L., Dzierżewicz Z. Wpływ kwasu fi tynowego na zawartość wtórnych produktów peroksydacji lipidów w komórkach nowotworowych jelita grubego linii Caco-2. Ann. Acad. Med. Siles. 2006; 60: 516-522.
 
24.
Ramasamy S., Parthasarathy S., Harrison D.G. Regulation of endothelial nitric oxide synthase gene expression by oxidized linoleic acid. J. Lipid Res. 1998; 39: 268-276.
 
25.
Empson K.L., Labuza T.P., Graf E. Phytic acid as a food antioxidant. J. Food Sci. 1991; 56: 560-563.
 
26.
Lee B.J., Hendricks D.G. Metal-catalyzed oxidation of ascorbate, deoxyribose and linoleic acid as aff ected by phytic acid in a model system. J. Food Sci. 1997; 62: 935- 938.
 
27.
Nielsen N.S., Petersen A., Meyer A.S., Timm-Heinrich M., Jacobsen Ch. Eff ects of lactoferrin, phytic acid, and EDTA on oxidation in two food emulsions enriched with long-chain polyunsaturated fatty acids. J. Agric. Food Chem. 2004; 52: 7690- 7699.
 
28.
Ahn D.U., Olson D.G., Jo C., Love J., Jin S.K. Volatiles production and lipid oxidation on irradiated cooked sausage as related to packaging and storage. J. Food Sci. 1999, 64, 226-229.
 
29.
Park H.R., Ahn H.J, Kim J.H. i wsp. Effects of irradiated phytic acid on antioxidation and color stability in meat models. J. Agric. Food Chem. 2004; 52: 2572-2576.
 
30.
Garcia-Casal M.N., Leets I., Layrisse M.
 
31.
Lee H.J., Lee S.A., Choi H. Dietary administration of inositol and/or inositol-6- phosphate prevents chemically-induced rat hepatocarcinogenesis. Asian Pac. J. Cancer Prev. 2005; 6: 41-47.
 
32.
Hassan S.A., Rizk M.Z., El-Sharkawi F., Badary O., Kadry M.O. The possible synergestic role of phytic acid and catechin in ameliorating the deteriorative biochemical eff ects induced by carbon tetrachloride in rats. J. Appl. Sci. Res. 2007; 3: 1449-1459.
 
33.
Kitamura Y., Nishikawa A., Nakamura H. i wsp. Eff ects of N-acetylcysteine, quercetin, and phytic acid on spontaneous hepatic and renal lesions in LEC rats. Toxicol. Pathol. 2005; 33: 584-592.
 
34.
Rimbach G., Pallauf J. Eff ect of dietary phytate on magnesium bioavailability and liver oxidant status in growing rats. Food Chem. Toxicol. 1999; 37: 37–45.
 
eISSN:1734-025X
Journals System - logo
Scroll to top