One patient, multiple cardiac implantable devices, a shared threat: T-wave oversensing in the course of hyperkalemia
 
More details
Hide details
1
Students’ Scientific Club, Department of Cardiology and Electrotherapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
 
2
Department of Cardiology and Electrotherapy, Silesian Centre for Heart Diseases in Zabrze, Poland
 
3
Department of Cardiology and Electrotherapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
 
 
Corresponding author
Michał Krawiec   

Katedra i Klinika Kardiologii i Elektroterapii, Śląskie Centrum Chorób Serca, ul. M. Curie-Skłodowskiej 9, 41-800 Zabrze
 
 
Ann. Acad. Med. Siles. 2025;1(nr specj.):93-97
 
KEYWORDS
TOPICS
ABSTRACT
Implantable cardiac devices, such as implantable cardioverter-defibrillators (ICDs) and pacemakers, play a crucial role in the management of patients with severe cardiac arrhythmias. These devices enable continuous monitoring and regulation of cardiac activity, thereby preventing life-threatening arrhythmic events. However, their function may be compromised by electrolyte imbalances, among which hyperkalemia is particularly significant. This condition may result in inappropriate shocks or misdetection of arrhythmias. We present the case of a 42-year-old male with a history of chronic heart failure and end-stage renal disease, who was admitted to a cardiology center for cardiovascular assessment and further management. In 2023, the patient underwent implantation of a subcutaneous implantable cardioverter-defibrillator (S-ICD) due to progressive heart failure. During the course of treatment, the patient experienced an inappropriate S-ICD shock triggered by hyperkalemia (serum potassium concentration of 7.21 mmol/L, which led to increased T-wave oversensing and subsequent inappropriate high-energy therapy). Implantable devices are a cornerstone in the treatment of patients with advanced cardiac arrhythmias; however, their effectiveness is highly dependent on the proper monitoring of serum electrolyte levels. Hyperkalemia can interfere with device sensing and therapy delivery, emphasizing the importance of regular electrolyte assessment, particularly potassium, in patients with implanted cardiac devices.
REFERENCES (35)
1.
Greene SJ, Bauersachs J, Brugts JJ, Ezekowitz JA, Lam CSP, Lund LH, et al. Worsening heart failure: nomenclature, epidemiology, and future directions: JACC review topic of the week. J Am Coll Cardiol. 2023;81(4):413–424. doi: 10.1016/j.jacc.2022.11.023.
 
2.
Ziaeian B, Fonarow GC. Epidemiology and aetiology of heart failure. Nat Rev Cardiol. 2016;13(6):368–378. doi: 10.1038/nrcardio.2016.25.
 
3.
Savarese G, Becher PM, Lund LH, Seferovic P, Rosano GMC, Coats AJS. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res. 2023;118(17):3272–3287. doi: 10.1093/cvr/cvac013.
 
4.
Shams P, Malik A, Chhabra L. Congestive heart failure. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2025, https://www.ncbi.nlm.nih.gov/b... [accessed on 13 June 2025].
 
5.
Knap K. Niewydolność serca. Mp.pl, 19.07.2018 [online] https://www.mp.pl/pacjent/chor... [accessed on 15 May 2025].
 
6.
Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, et al.; ACC/AHA Joint Committee Members. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022;145(18):e895–e1032. doi: 10.1161/CIR.0000000000001063.
 
7.
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42(36):3599–3726. doi: 10.1093/eurheartj/ehab368.
 
8.
King M, Kingery J, Casey B. Diagnosis and evaluation of heart failure. Am Fam Physician. 2012;85(12):1161–1168.
 
9.
Gayat E, Arrigo M, Littnerova S, Sato N, Parenica J, Ishihara S, et al. Heart failure oral therapies at discharge are associated with better outcome in acute heart failure: a propensity-score matched study. Eur J Heart Fail. 2018;20(2):345–354. doi: 10.1002/ejhf.932.
 
10.
Crespo-Leiro MG, Anker SD, Maggioni AP, Coats AJ, Filippatos G, Ruschitzka F, et al. European Society of Cardiology Heart Failure Long-Term Registry (ESC-HF-LT): 1-year follow-up outcomes and differences across regions. Eur J Heart Fail. 2016;18(6):613–625. doi: 10.1002/ejhf.566.
 
11.
McMurray JJV, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371(11):993–1004. doi: 10.1056/NEJMoa1409077.
 
12.
Iqbal AM, Butt N, Jamal SF. Automatic internal cardiac defibrillator. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023, https://www.ncbi.nlm.nih.gov/b... [accessed on 31 May 2025].
 
13.
Vio R, Forlin E, Čulić V, Themistoclakis S, Proietti R, China P. Systematic Review on S-ICD Lead Extraction. J Clin Med. 2023;12(11): 3710. doi: 10.3390/jcm12113710.
 
14.
Doldi F, Biller B, Reinke F, Eckardt L. New developments in leadless pacing systems. [Article in German]. Herz. 2021;46(6):513–519. doi: 10.1007/s00059-021-05075-6.
 
15.
Francis J. T wave oversensing. Indian Pacing Electrophysiol J. 2010; 10(6):236–238.
 
16.
Sun Y, Zhang P, Li X, Guo J. Inappropriate ICD discharge due to T-wave oversensing in a patient with short QT syndrome. Pacing Clin Electrophysiol. 2010;33(1):113–116. doi: 10.1111/j.1540-8159.2009.02538.x.
 
17.
Cohen MI, Anagnostopoulos PV, Papez A. An unusual resolution of T-wave oversensing in an implantable cardioverter defibrillator in a child with long QT syndrome. J Interv Card Electrophysiol. 2009;25(3):235–238. doi: 10.1007/s10840-008-9353-8.
 
18.
Barold SS, Herweg B. The effect of hyperkalaemia on cardiac rhythm devices. Europace. 2014;16(4):467–476. doi: 10.1093/europace/eut383.
 
19.
Weiss JN, Qu Z, Shivkumar K. Electrophysiology of hypokalemia and hyperkalemia. Circ Arrhythm Electrophysiol. 2017;10(3):e004667. doi: 10.1161/CIRCEP.116.004667.
 
20.
Knops RE, Olde Nordkamp LR, Delnoy PPH, Boersma LV, Kuschyk J, El-Chami MF, et al. Subcutaneous or transvenous defibrillator therapy. N Engl J Med. 2020;383(6):526–536. doi: 10.1056/NEJMoa1915932.
 
21.
Kaya E, Rassaf T, Wakili R. Subcutaneous ICD: Current standards and future perspective. Int J Cardiol Heart Vasc. 2019;24:100409. doi: 10.1016/j.ijcha.2019.100409.
 
22.
Bryant RM. How implantable cardioverter-defibrillators work and simple programming. Cardiol Young. 2017;27(S1):S121–S125. doi: 10.1017/S1047951116002353.
 
23.
Implantable cardioverter-defibrillators (ICDs). Mayo Clinic [online] https://www.mayoclinic.org/tes... [accessed on 13 June 2025].
 
24.
Larbig R, Bettin M, Motloch LJ, Fischer A, Bode N, Frommeyer G, et al. Management of inappropriate shocks/T-wave-oversensing in S-ICD®-patients. [Article in German]. Herzschrittmacherther Elektrophysiol. 2018;29(1):122–126. doi: 10.1007/s00399-018-0555-1.
 
25.
Gonzalez A, Franqui H, Lopez J, Banchs H. Hyperkalemia-Induced T Wave Oversensing in an Implantable Cardioverter Defibrillator. Cureus. 2024;16(2):e54135. doi: 10.7759/cureus.54135.
 
26.
Sun YX, Gao J, Jiang CY, Xue YM, Xu YZ, Liu G, et al. T Wave Safety Margin during the Process of ICD Implantation As a Novel Predictor of T Wave Oversensing. Front Physiol. 2017;8:659. doi: 10.3389/fphys.2017.00659.
 
27.
Adhikari S, Arisha MJ, Assal C. T-wave oversensing precipitating cardiogenic shock in a pacerdependent patient. HeartRhythm Case Rep. 2023;9(10):728–731. doi: 10.1016/j.hrcr.2023.07.015.
 
28.
Strik M, Ploux S, Eschalier R, Mondoly P, Fontagne L, Ramirez FD, et al. T-Wave Oversensing with Contemporary Implantable Cardioverter-Defibrillators. J Cardiovasc Dev Dis. 2023;10(10):430. doi: 10.3390/jcdd10100430.
 
29.
El-Chami MF, Harbieh B, Levy M, Leon AR, Merchant FM. Clinical and electrocardiographic predictors of T wave oversensing in patients with subcutaneous ICD. J Arrhythm. 2016;32(3):181–185. doi: 10.1016/j.joa.2016.01.002.
 
30.
Topf A, Motloch LJ, Kraus J, Danmayr F, Mirna M, Schernthaner C, et al. Exercise-related T-wave oversensing: an underestimated cause of reduced exercise capacity in a pacemaker-dependent patient-a case report and review of the literature. J Interv Card Electrophysiol. 2020;59(1):67–70. doi: 10.1007/s10840-019-00698-6.
 
31.
Rasania SP, Mountantonakis S, Patel VV. Inappropriate ICD shocks caused by T-wave oversensing due to acute alcohol intoxication. Pacing Clin Electrophysiol. 2012;35(9):e267–e271. doi: 10.1111/j.1540-8159.2012.03348.x.
 
32.
Konishi S, Minamiguchi H, Ozu K, Mizuno H, Hikoso S, Yamaguchi O, et al. Routine exercise testing could not predict T-wave oversensing in a patient after a subcutaneous implantable cardioverter-defibrillator implant. Clin Case Rep. 2017;6(2):309–313. doi: 10.1002/ccr3.1345.
 
33.
Ochman AR, Riesbeck M, Corbisiero M. Inappropriate shock caused by P- and T-wave oversensing in a subcutaneous implantable cardiac defibrillator in a patient in sinus rhythm. HeartRhythm Case Rep. 2020;7(7):433–435. doi: 10.1016/j.hrcr.2020.11.022.
 
34.
Rodríguez-Mañero M, de Asmundis C, Sacher F, Arbelo E, Probst V, Castro-Hevia J, et al. T-wave oversensing in patients with Brugada syndrome: true bipolar versus integrated bipolar implantable cardioverter defibrillator leads: multicenter retrospective study. Circ Arrhythm Elec-trophysiol. 2015;8(4):792–798. doi: 10.1161/CIRCEP.115.002871.
 
35.
Nathan K, Kamel O, Marks D, Russo AM. Treatment of symptomatic bradycardia due to T-wave oversensing with implantation of a new generator incorporating delayed decay and threshold start sensitization algorithms. HeartRhythm Case Rep. 2020;6(12):891–895. doi: 10.1016/j.hrcr.2020.06.024.
 
eISSN:1734-025X
Journals System - logo
Scroll to top