The presence of antibiotics in food and the consequences for human health
More details
Hide details
1
Students’ Scientific Club, Department of Environmental Medicine and Epidemiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
2
Department of Environmental Medicine and Epidemiology, Faculty of Medical Sciences in Zabrze,
Medical University of Silesia, Katowice, Poland
Corresponding author
Dominika Nicz
Studenckie Koło Naukowe, Katedra i Zakład Medycyny i Epidemiologii Środowiskowej, Wydział Nauk Medycznych w Zabrzu ŚUM, ul. Jordana 19, 41-808 Zabrze
Ann. Acad. Med. Siles. 2025;1(nr specj.):83-92
KEYWORDS
TOPICS
ABSTRACT
Modern technological advancements are intensifying activities across numerous sectors, including human medicine, veterinary medicine, and agriculture. These fields are closely interconnected, notably through the widespread use of antibiotics. These antimicrobial agents, employed in the treatment of both humans and animals, are increasingly associated with significant public health and environmental concerns. The excessive and unregulated use of antibiotics in livestock production, combined with the application of manure and other animal-derived products as agricultural fertilizers, contributes to the accumulation of these substances in the environment and their subsequent entry into the food chain. Consequently, antibiotic residues may be detected in food products. Prolonged exposure to subtherapeutic doses of antibiotics can promote the development of bacterial resistance (antimicrobial resistance), as well as induce various adverse health effects, including hepatotoxicity, allergic reactions, and potential carcinogenicity. In light of these risks, the establishment of maximum residue limits (MRLs) and the implementation of guidelines for the prudent use of antibiotics in animal husbandry and agriculture are essential for safeguarding public health. The presence of antibiotic residues in food represents a significant threat to public health, primarily due to its role in accelerating antimicrobial resistance. Therefore, the judicious use of these substances in agriculture and livestock farming, supported by robust regulatory frameworks and effective sanitary monitoring throughout the food production chain, is of paramount importance.
REFERENCES (114)
1.
Singh H, Thakur B, Bhardwaj SK, Khatri M, Kim KH, Bhardwaj N. Nanomaterial-based fluorescent biosensors for the detection of antibiotics in foodstuffs: A review. Food Chem. 2023;426:136657. doi: 10.1016/j.foodchem.2023.136657.
2.
Bacanlı M, Başaran N. Importance of antibiotic residues in animal food. Food Chem Toxicol. 2019;125:462–466. doi: 10.1016/j.fct.2019.01.033.
3.
Annual report 2024: The European Medicines Agency's contribution to science, medicines and health in 2024. European Medicines Agency [online]
https://www.ema.europa.eu/en/a... [accessed on 20 February 2025].
4.
Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, et al. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci U S A. 2015;112(18):5649–5654. doi: 10.1073/pnas.1503141112.
7.
Aarestrup F. Sustainable farming: Get pigs off antibiotics. Nature. 2012;486(7404):465–466. doi: 10.1038/486465a.
8.
Arsène MMJ, Davares AKL, Viktorovna PI, Andreevna SL, Sarra S, Khelifi I, et al. The public health issue of antibiotic residues in food and feed: Causes, consequences, and potential solutions. Vet World. 2022;15(3):662–671. doi: 10.14202/vetworld.2022.662-671.
9.
Graham JP, Boland JJ, Silbergeld E. Growth promoting antibiotics in food animal production: An economic analysis. Public Health Rep. 2007;122(1):79–87. doi: 10.1177/003335490712200111.
10.
Szűcs V, Szabó E, Guerrero L, Tarcea M, Bánáti D. Modelling of avoidance of food additives: a cross country study. Int J Food Sci Nutr. 2019;70(8):1020–1032. doi: 10.1080/09637486.2019.1597837.
11.
Thakali A, MacRae JD. A review of chemical and microbial contamination in food: What are the threats to a circular food system? Environ Res. 2021;194:110635. doi: 10.1016/j.envres.2020.110635.
12.
Dong H, Xu Y, Zhang Q, Li H, Chen L. Activity and safety evaluation of natural preservatives. Food Res Int. 2024;190:114548. doi: 10.1016/j.foodres.2024.114548.
14.
Albernaz-Gonçalves R, Olmos Antillón G, Hötzel MJ. Linking Animal Welfare and Antibiotic Use in Pig Farming–A Review. Animals. 2022;12(2):216. doi: 10.3390/ani12020216.
15.
Mellor DJ. Updating Animal Welfare Thinking: Moving beyond the “Five Freedoms” towards “A Life Worth Living.” Animals. 2016;6(3):21. doi: 10.3390/ani6030021.
16.
Mottet A, de Haan C, Falcucci A, Tempio G, Opio C, Gerber P. Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Global Food Security. 2017;14:1–8. doi: 10.1016/j.gfs.2017.01.001.
17.
Daros RR, Eriksson HK, Weary DM, von Keyserlingk MAG. The relationship between transition period diseases and lameness, feeding time, and body condition during the dry period. J Dairy Sci. 2020;103(1):649–665. doi: 10.3168/jds.2019-16975.
18.
Cuong NV, Padungtod P, Thwaites G, Carrique-Mas JJ. Antimicrobial Usage in Animal Production: A Review of the Literature with a Focus on Low- and Middle-Income Countries. Antibiotics. 2018;7(3):75. doi: 10.3390/antibiotics7030075.
19.
He Y, Yuan Q, Mathieu J, Stadler LB, Senehi NL, Sun R, et al. Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment. npj Clean Water. 2020;3(1). doi: 10.1038/s41545-020-0051-0.
20.
Rana MS, Lee SY, Kang HJ, Hur SJ. Reducing Veterinary Drug Residues in Animal Products: A Review. Food Sci Anim Resour. 2019;39(5):687–703. doi: 10.5851/kosfa.2019.e65.
21.
Tiseo K, Huber L, Gilbert M, Robinson TP, Van Boeckel TP. Global Trends in Antimicrobial Use in Food Animals from 2017 to 2030. Antibiotics. 2020;9(12):918. doi: 10.3390/antibiotics9120918.
22.
2023 Summary Report On Antimicrobials Sold or Distributed for Use in Food-Producing Animals. Food and Drug Administration, 2024 [online]
https://www.fda.gov/animal-vet... [accessed on 24 February 2025].
23.
Jammoul A, El Darra N. Evaluation of Antibiotics Residues in Chicken Meat Samples in Lebanon. Antibiotics. 2019;8(2):69. doi: 10.3390/antibiotics8020069.
24.
Bartkiene E, Ruzauskas M, Bartkevics V, Pugajeva I, Zavistanaviciute P, Starkute V, et al. Study of the antibiotic residues in poultry meat in some of the EU countries and selection of the best compositions of lactic acid bacteria and essential oils against Salmonella enterica. Poult Sci. 2020;99(8):4065–4076. doi: 10.1016/j.psj.2020.05.002.
25.
Akhmet Z, Zhaxylykova G, Sukor R, Serikbayeva A, Myrzabek K. Incidence of hormonal growth stimulant and antibiotics residues in chicken meat. Potr S J F Sci. 2021;15:608–615. doi: 10.5219/1663.
26.
Zhu Q, Sun P, Zhang B, Kong L, Xiao C, Song Z. Progress on Gut Health Maintenance and Antibiotic Alternatives in Broiler Chicken Production. Front Nutr. 2021;8:692839. doi: 10.3389/fnut.2021.692839.
27.
de Faria LV, Lisboa TP, Campos NDS, Alves GF, Matos MAC, Matos RC, et al. Electrochemical methods for the determination of antibiotic residues in milk: A critical review. Anal Chim Acta. 2021;1173:338569. doi: 10.1016/j.aca.2021.338569.
28.
Zhang Y, Lu J, Yan Y, Liu J, Wang M. Antibiotic residues in cattle and sheep meat and human exposure assessment in southern Xinjiang, China. Food Sci Nutr. 2021;9(11):6152–6161. doi: 10.1002/fsn3.2568.
29.
Mingle CL, Darko G, Borquaye LS, Asare-Donkor NK, Woode E, Koranteng F. Veterinary Drug Residues in Beef, Chicken, and Egg from Ghana. Chem Africa. 2021;4(1). doi: 10.1007/s42250-020-00225-5.
30.
Mesfin YM, Mitiku BA, Tamrat Admasu H. Veterinary Drug Residues in Food Products of Animal Origin and Their Public Health Consequences: A Review. Vet Med Sci. 2024;10(6):e70049. doi: 10.1002/vms3.70049.
31.
Muaz K, Riaz M, Akhtar S, Park S, Ismail A. Antibiotic Residues in Chicken Meat: Global Prevalence, Threats, and Decontamination Strategies: A Review. J Food Prot. 2018;81(4):619–627. doi: 10.4315/0362-028X.JFP-17-086.
32.
Ghimpețeanu OM, Pogurschi EN, Popa DC, Dragomir N, Drăgotoiu T, Mihai OD, et al. Antibiotic Use in Livestock and Residues in Food–A Public Health Threat: A Review. Foods. 2022;11(10):1430. doi: 10.3390/foods11101430.
33.
Ren J, Shi H, Liu J, Zheng C, Lu G, Hao S, et al. Occurrence, source apportionment and ecological risk assessment of thirty antibiotics in farmland system. J Environ Manage. 2023;335:117546. doi: 10.1016/j.jenvman.2023.117546.
34.
Okocha RC, Olatoye IO, Adedeji OB. Food safety impacts of antimicrobial use and their residues in aquaculture. Public Health Rev. 2018;39:21. doi: 10.1186/s40985-018-0099-2.
35.
Chen J, Sun R, Pan C, Sun Y, Mai B, Li QX. Antibiotics and Food Safety in Aquaculture. J Agric Food Chem. 2020;68(43):11908–11919. doi: 10.1021/acs.jafc.0c03996.
36.
Thiang EL, Lee CW, Takada H, Seki K, Takei A, Suzuki S, et al. Antibiotic residues from aquaculture farms and their ecological risks in Southeast Asia: A case study from Malaysia. Ecosystem Health and Sustainability. 2021;7(1):1926337. doi: 10.1080/20964129.2021.1926337.
37.
Hossain A, Habibullah-Al-Mamun M, Nagano I, Masunaga S, Kitazawa D, Matsuda H. Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: risks, current concern, and future thinking. Environ Sci Pollut Res. 2022;29(8):11054–11075. doi: 10.1007/s11356-021-17825-4.
38.
Lin H, Sun W, Yu Y, Ding Y, Yang Y, Zhang Z, et al. Simultaneous reductions in antibiotics and heavy metal pollution during manure composting. Sci Total Environ. 2021;788:147830. doi: 10.1016/j.scitotenv.2021.147830.
39.
Jia WL, Song C, He LY, Wang B, Gao FZ, Zhang M, et al. Antibiotics in soil and water: Occurrence, fate, and risk. Curr Opin Environ Sci Health. 2022;32(1):100437. doi: 10.1016/j.coesh.2022.100437.
40.
Qiu J, Zhao T, Liu Q, He J, He D, Wu G, et al. Residual veterinary antibiotics in pig excreta after oral administration of sulfonamides. Environ Geochem Health. 2016;38(2):549–556. doi: 10.1007/s10653-015-9740-x.
41.
Degradation of Antibiotics and Antibiotic-Resistant Bacteria from Various Sources. P. Singh, M. Sillanpää [ed.]. 1st ed. Elsevier; Academic Press, 2022.
42.
Zhao X, Wang J, Zhu L, Wang J. Field-based evidence for enrichment of antibiotic resistance genes and mobile genetic elements in manure-amended vegetable soils. Sci Total Environ. 2019;654:906–913. doi: 10.1016/j.scitotenv.2018.10.446.
43.
Zhang H, Zhou Y, Huang Y, Wu L, Liu X, Luo Y. Residues and risks of veterinary antibiotics in protected vegetable soils following application of different manures. Chemosphere. 2016;152:229–237. doi: 10.1016/j.chemosphere.2016.02.111.
44.
Xu L, Wang W, Xu W. Effects of tetracycline antibiotics in chicken manure on soil microbes and antibiotic resistance genes (ARGs). Environ Geochem Health. 2022;44(1):273–284. doi: 10.1007/s10653-021-01004-y.
45.
He T, Wei RC, Zhang L, Gong L, Zhu L, Gu J, et al. Dissemination of the tet(X)-Variant Genes from Layer Farms to Manure-Receiving Soil and Corresponding Lettuce. Environ Sci Technol. 2021;55(3):1604–1614. doi: 10.1021/acs.est.0c05042.
46.
Pu Q, Zhao LX, Li YT, Su JQ. Manure fertilization increase antibiotic resistance in soils from typical greenhouse vegetable production bases, China. J Hazard Mater. 2020;391:122267. doi: 10.1016/j.jhazmat.2020.122267.
47.
Wang WZ, Chi SL, Xu WH, Zhang CL. Influence of long-term chicken manure application on the concentration of soil tetracycline antibiotics and resistant bacteria variations. Appl Ecol Environ Res. 2018;16(2):1143–1153. doi: 10.15666/aeer/1602_11431153.
48.
Durán-Viseras A, Lindner BG, Hatt JK, Lai A, Wallace R, Ginn O, et al. Metagenomic insights into the impact of litter from poultry Concentrated Animal Feeding Operations (CAFOs) to adjacent soil and water microbial communities. Sci Total Environ. 2024;920:170772. doi: 10.1016/j.scitotenv.2024.170772.
49.
Xu T, Liu J, Wu Q, Hui X, Duan W, Zhang Z, et al. Progress in combating antibiotic resistance in animal agriculture. CyTA - J Food. 2024;22(1). doi: 10.1080/19476337.2024.2330674.
50.
Mulchandani R, Wang Y, Gilbert M, Van Boeckel TP. Global trends in antimicrobial use in food-producing animals: 2020 to 2030. PLOS Glob Public Health. 2023;3(2):e0001305. doi: 10.1371/journal.pgph.0001305.
51.
Gros M, Mas-Pla J, Sànchez-Melsió A, Čelić M, Castaño M, Rodríguez-Mozaz S, et al. Antibiotics, antibiotic resistance and associated risk in natural springs from an agroecosystem environment. Sci Total Environ. 2023;857(Pt 1):159202. doi: 10.1016/j.scitotenv.2022.159202.
52.
Zhang M, He LY, Liu YS, Zhao JL, Liu WR, Zhang JN, et al. Fate of veterinary antibiotics during animal manure composting. Sci Total Environ. 2019;650(Pt 1):1363–1370. doi: 10.1016/j.scitotenv.2018.09.147.
53.
Wang Y, Ma L, Liu Z, Chen J, Song H, Wang J, et al. Microbial interactions play an important role in regulating the effects of plant species on soil bacterial diversity. Front Microbiol. 2022;13:984200. doi: 10.3389/fmicb.2022.984200.
54.
Al-Wabel MI, Ahmad M, Al-Swadi HA, Ahmad J, Abdin Y, Usman ARA, et al. Sorption-Desorption Behavior of Doxycycline in Soil-Manure Systems Amended with Mesquite Wood Waste Biochar. Plants. 2021;10(12):2566. doi: 10.3390/plants10122566.
55.
Zheng F, Bi QF, Giles M, Neilson R, Chen QL, Lin XY, et al. Fates of Antibiotic Resistance Genes in the Gut Microbiome from Different Soil Fauna under Long-Term Fertilization. Environ Sci Technol. 2021;55(1):423–432. doi: 10.1021/acs.est.0c03893.
56.
Zhu YG, Xiong C, Wei Z, Chen QL, Ma B, Zhou SY, et al. Impacts of global change on the phyllosphere microbiome. New Phytol. 2022;234(6):1977–1986. doi: 10.1111/nph.17928.
57.
Margas M, Piotrowicz-Cieślak AI, Michalczyk DJ, Głowacka K. A Strong Impact of Soil Tetracycline on Physiology and Biochemistry of Pea Seedlings. Scientifica. 2019;2019:3164706. doi: 10.1155/2019/3164706.
58.
Pan M, Chu LM. Transfer of antibiotics from wastewater or animal manure to soil and edible crops. Environ Pollut. 2017;231(Pt 1):829–836. doi: 10.1016/j.envpol.2017.08.051.
59.
Yu X, Chen J, Liu X, Sun Y, He H. The mechanism of uptake and translocation of antibiotics by pak choi (Brassica rapa subsp. chinensis). Sci Total Environ. 2022;810:151748. doi: 10.1016/j.scitotenv.2021.151748.
60.
Geng J, Liu X, Wang J, Li S. Accumulation and risk assessment of antibiotics in edible plants grown in contaminated farmlands: A review. Sci Total Environ. 2022;853:158616. doi: 10.1016/j.scitotenv.2022.158616.
61.
Liu X, Lv Y, Xu K, Xiao X, Xi B, Lu S. Response of ginger growth to a tetracycline-contaminated environment and residues of antibiotic and antibiotic resistance genes. Chemosphere. 2018;201:137–143. doi: 10.1016/j.chemosphere.2018.02.178.
62.
Gomes MP, Rocha DC, Moreira de Brito JC, Tavares DS, Marques RZ, Soffiatti P, et al. Emerging contaminants in water used for maize irrigation: Economic and food safety losses associated with ciprofloxacin and glyphosate. Ecotoxicol Environ Saf. 2020;196:110549. doi: 10.1016/j.ecoenv.2020.110549.
63.
Ahmed S, Sameen DE, Lu R, Li R, Dai J, Qin W, et al. Research progress on antimicrobial materials for food packaging. Crit Rev Food Sci Nutr. 2022;62(11):3088–3102. doi: 10.1080/10408398.2020.1863327.
64.
Ramos M, Beltran A, Fortunati E, Peltzer MA, Cristofaro F, Visai L, et al. Controlled Release of Thymol from Poly(Lactic Acid)-Based Silver Nanocomposite Films with Antibacterial and Antioxidant Activity. Antioxidants. 2020;9(5):395. doi: 10.3390/antiox9050395.
65.
Motelica L, Ficai D, Ficai A, Oprea OC, Kaya DA, Andronescu E. Biodegradable Antimicrobial Food Packaging: Trends and Perspectives. Foods. 2020;9(10):1438. doi: 10.3390/foods9101438.
66.
Smola-Dmochowska A, Lewicka K, Macyk A, Rychter P, Pamuła E, Dobrzyński P. Biodegradable Polymers and Polymer Composites with Antibacterial Properties. Int J Mol Sci. 2023;24(8):7473. doi: 10.3390/ijms24087473.
67.
Bibow A, Oleszek W. Essential Oils as Potential Natural Antioxidants, Antimicrobial, and Antifungal Agents in Active Food Packaging. Antibiotics. 2024;13(12):1168. doi: 10.3390/antibiotics13121168.
68.
Rosenberg M, Ilić K, Juganson K, Ivask A, Ahonen M, Vinković Vrček I, et al. Potential ecotoxicological effects of antimicrobial surface coatings: a literature survey backed up by analysis of market reports. PeerJ. 2019;7:e6315. doi: 10.7717/peerj.6315.
69.
Saadat S, Pandey G, Tharmavaram M, Braganza V, Rawtani D. Nano-interfacial decoration of Halloysite Nanotubes for the development of antimicrobial nanocomposites. Adv Colloid Interface Sci. 2020;275:102063. doi: 10.1016/j.cis.2019.102063.
70.
Cherednichenko K, Kopitsyn D, Batasheva S, Fakhrullin R. Probing Antimicrobial Halloysite/Biopolymer Composites with Electron Microscopy: Advantages and Limitations. Polymers. 2021;13(20):3510. doi: 10.3390/polym13203510.
71.
Reuben RC, Torres C. Bacteriocins: potentials and prospects in health and agrifood systems. Arch Microbiol. 2024;206(5):233. doi: 10.1007/s00203-024-03948-y.
72.
Gharsallaoui A, Oulahal N, Joly C, Degraeve P. Nisin as a Food Preservative: Part 1: Physicochemical Properties, Antimicrobial Activity, and Main Uses. Crit Rev Food Sci Nutr. 2016;56(8):1262–1274. doi: 10.1080/10408398.2013.763765.
73.
Gharsallaoui A, Joly C, Oulahal N, Degraeve P. Nisin as a Food Preservative: Part 2: Antimicrobial Polymer Materials Containing Nisin. Crit Rev Food Sci Nutr. 2016;56(8):1275–1289. doi: 10.1080/10408398.2013.763766.
74.
Rodríguez-Melcón C, Esteves A, Carballo J, Alonso-Calleja C, Capita R. Effect of Sodium Nitrite, Nisin and Lactic Acid on the Prevalence and Antibiotic Resistance Patterns of Listeria monocytogenes Naturally Present in Poultry. Foods. 2023;12(17):3273. doi: 10.3390/foods12173273.
75.
Vukomanović M, Žunič V, Kunej Š, Jančar B, Jeverica S, Podlipec R, et al. Nano-engineering the Antimicrobial Spectrum of Lantibiotics: Activity of Nisin against Gram Negative Bacteria. Sci Rep. 2017;7(1):4324. doi: 10.1038/s41598-017-04670-0.
76.
Rizzo A, Piccinno M, Lillo E, Carbonari A, Jirillo F, Sciorsci RL. Antimicrobial Resistance and Current Alternatives in Veterinary Practice: A Review. Curr Pharm Des. 2023;29(5):312–322. doi: 10.2174/1381612829666230130144731.
77.
Chen J, Ying GG, Deng WJ. Antibiotic Residues in Food: Extraction, Analysis, and Human Health Concerns. J Agric Food Chem. 2019;67(27):7569–7586. doi: 10.1021/acs.jafc.9b01334.
78.
Baynes RE, Dedonder K, Kissell L, Mzyk D, Marmulak T, Smith G, et al. Health concerns and management of select veterinary drug residues. Food Chem Toxicol. 2016;88:112–122. doi: 10.1016/j.fct.2015.12.020.
79.
Herman RL, Collis D, Bullock GL. Oxytetracycline residues in different tissues of trout. Technical Paper 37. U.S. Fish and Wildlife Service; Washington, 1969.
80.
Hutchings MI, Truman AW, Wilkinson B. Antibiotics: past, present and future. Curr Opin Microbiol. 2019;51:72–80. doi: 10.1016/j.mib.2019.10.008.
81.
Jufer H, Reilly L, Mojica ERE. Antibiotics Pollution in Soil and Water: Potential Ecological and Human Health Issues. Encycl Environ Health. 2019;118–131.
82.
Baralla E, Demontis MP, Dessì F, Varoni MV. An Overview of Antibiotics as Emerging Contaminants: Occurrence in Bivalves as Biomonitoring Organisms. Animals. 2021;11(11):3239. doi: 10.3390/ani11113239.
83.
Dhayal VS, Krishnan A, Rehman BU, Singh VP. Understanding Knowledge and Attitude of Farmers towards Antibiotic Use and Antimicrobial Resistance in Jhunjhunu District, Rajasthan India. Antibiotics. 2023;12(12):1718. doi: 10.3390/antibiotics12121718.
84.
Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018;11:1645–1658. doi: 10.2147/IDR.S173867.
85.
Shousha A, Awaiwanont N, Sofka D, Smulders FJM, Paulsen P, Szostak MP, et al. Bacteriophages Isolated from Chicken Meat and the Horizontal Transfer of Antimicrobial Resistance Genes. Appl Environ Microbiol. 2015;81(14):4600–4606. doi: 10.1128/AEM.00872-15.
86.
Tong C, Xiao D, Xie L, Yang J, Zhao R, Hao J, et al. Swine manure facilitates the spread of antibiotic resistome including tigecycline-resistant tet(X) variants to farm workers and receiving environment. Sci Total Environ. 2022;808:152157. doi: 10.1016/j.scitotenv.2021.152157.
87.
Scott HM, Acuff G, Bergeron G, Bourassa MW, Gill J, Graham DW, et al. Critically important antibiotics: criteria and approaches for measuring and reducing their use in food animal agriculture. Ann N Y Acad Sci. 2019;1441(1):8–16. doi: 10.1111/nyas.14058.
88.
Li H, Liu B, Li M, Shen M. Livestock and poultry breeding farms as a fixed and underestimated source of antibiotic resistance genes. Environ Sci Pollut Res Int. 2024;31(37):49916–49931. doi: 10.1007/s11356-024-34413-4.
89.
Tarín-Pelló A, Suay-García B, Pérez-Gracia MT. Antibiotic resistant bacteria: current situation and treatment options to accelerate the development of a new antimicrobial arsenal. Expert Rev Anti Infect Ther. 2022;20(8):1095–1108. doi: 10.1080/14787210.2022.2078308.
90.
Factsheet for experts - Antimicrobial resistance. European Centre for Disease Prevention and Control, 18 Nov 2008 [online]
https://www.ecdc.europa.eu/en/... [accessed on 1 March 2025].
91.
Aggarwal R, Mahajan P, Pandiya S, Bajaj A, Verma SK, Yadav P, et al. Antibiotic resistance: a global crisis, problems and solutions. Crit Rev Microbiol. 2024;50(5):896–921. doi: 10.1080/1040841X.2024.2313024.
93.
Lerminiaux NA, Cameron ADS. Horizontal transfer of antibiotic resistance genes in clinical environments. Can J Microbiol. 2019;65(1):34–44. doi: 10.1139/cjm-2018-0275.
94.
Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–655. doi: 10.1016/S0140-6736(21)02724-0.
95.
Piñeiro SA, Cerniglia CE. Antimicrobial drug residues in animal‐derived foods: Potential impact on the human intestinal microbiome. J Vet Pharmacol Ther. 2021;44(2): 215-222. doi: 10.1111/jvp.12892.
96.
Rahman MS, Hassan MM, Chowdhury S. Determination of antibiotic residues in milk and assessment of human health risk in Bangladesh. Heliyon. 2021;7(8):e07739. doi: 10.1016/j.heliyon.2021.e07739.
97.
Ahmad N, Joji RM, Shahid M. Evolution and implementation of One Health to control the dissemination of antibiotic-resistant bacteria and resistance genes: A review. Front Cell Infect Microbiol. 2023;12:1065796. doi: 10.3389/fcimb.2022.1065796.
98.
Hou L, Fu Y, Zhao C, Fan L, Hu H, Yin S. The research progress on the impact of antibiotics on the male reproductive system. Environ Int. 2024;187:108670. doi: 10.1016/j.envint.2024.108670.
99.
Stokstad ELR, Jukes TH, Pierce J, Page AC Jr, Franklin AL. The multiple nature of the animal protein factor. J Biol Chem. 1949;180(2):647–654.
100.
Gustafson RH, Bowen RE. Antibiotic use in animal agriculture. J Appl Microbiol. 1997;83(5):531–541. doi: 10.1046/j.1365-2672.1997.00280.x.
101.
Butaye P, Devriese LA, Haesebrouck F. Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on Gram-positive bacteria. Clin Microbiol Rev. 2003;16(2):175–188. doi: 10.1128/CMR.16.2.175-188.2003.
102.
Report / Joint Committee on the Use of Antibiotics in Animal Husbandry and Veterinary Medicine. London: Her Majesty’s Stationery Office (H.M.S.O.); 1969. Available from:
https://wellcomecollection.org... [accessed on 1 March 2025].
104.
Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2019/6 z dnia 11 grudnia 2018 r. w sprawie weterynaryjnych produktów leczniczych i uchylające dyrektywę 2001/82/WE (Tekst mający znaczenie dla EOG) [pdf]. Dziennik Urzędowy Unii Europejskiej;
https://eur-lex.europa.eu/lega... [accessed on 3 March 2025].
105.
Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2017/625 z dnia 15 marca 2017 r. w sprawie kontroli urzędowych i innych czynności urzędowych przeprowadzanych w celu zapewnienia stosowania prawa żywnościowego i paszowego […]. EUR-Lex.europa.eu [online]
https://eur-lex.europa.eu/lega... [accessed on 3 March 2025].
106.
Rozporządzenie Parlamentu Europejskiego i Rady (WE) nr 470/2009 z dnia 6 maja 2009 r. ustanawiające wspólnotowe procedury określania maksymalnych limitów pozostałości substancji farmakologicznie czynnych w środkach spożywczych pochodzenia zwierzęcego […]. EUR-Lex.europa.eu [online]
https://eur-lex.europa.eu/lega... [accessed on 3 march 2025].
107.
Główny Inspektorat Sanitarny. RASFF – System Wczesnego Ostrzegania o Niebezpiecznej Żywności i Paszach (Rapid Alert System for Food and Feed). Gov.pl [online]
https://www.gov.pl/web/gis/ras... [accessed on 3 March 2025].
108.
Dyrektywa Rady 96/22/WE z dnia 29 kwietnia 1996 r. dotycząca zakazu stosowania w gospodarstwach hodowlanych niektórych związków o działaniu hormonalnym, tyreostatycznym i ß‑agonistycznym i uchylająca dyrektywy 81/602/EWG, 88/146/EWG oraz 88/299/EWG [pdf]. Dziennik Urzędowy, 14.10.2003;
https://eur-lex.europa.eu/lega... [accessed on 3 March 2025].
109.
Nowacka-Kozak E, Gajda A, Gbylik-Sikorska M. Analysis of Aminoglycoside Antibiotics: A Challenge in Food Control. Molecules. 2023;28(12):4595. doi: 10.3390/molecules28124595.
110.
Soares VM, Pereira JG, Barreto F, Jank L, Rau RB, Dias Ribeiro CB, et al. Residues of Veterinary Drugs in Animal Products Commercialized in the Border Region of Brazil, Argentina, and Uruguay. J Food Prot. 2022;85(6):980–986. doi: 10.4315/JFP-21-415.
111.
Jeżak K, Kozajda A. Occurrence and spread of antibiotic-resistant bacteria on animal farms and in their vicinity in Poland and Ukraine–review. Environ Sci Pollut Res. 2022;29(7):9533–9559. doi: 10.1007/s11356-021-17773-z.
112.
Gens KD, Singer RS, Dilworth TJ, Heil EL, Beaudoin AL. Antimicrobials in Animal Agriculture in the United States: A Multidisciplinary Overview of Regulation and Utilization to Foster Collaboration: On Behalf Of the Society of Infectious Diseases Pharmacists. Open Forum Infect Dis. 2022;9(11):ofac542. doi: 10.1093/ofid/ofac542.
113.
Hu YJ, Cowling BJ. Reducing antibiotic use in livestock, China. Bull World Health Organ. 2020;98(5):360–361. doi: 10.2471/BLT.19.243501.