Porównanie współczynnika dyfuzji translacyjnej dla albumin surowicy kilku ssaków
Karol Monkos 1  
 
More details
Hide details
1
Department of Biophysics, Medical University of Silesia
CORRESPONDING AUTHOR
Karol Monkos   

Katedra i Zakład Biofizyki Śląski Uniwersytet Medyczny, ul. H. Jordana 19, 41-808 Zabrze 8, tel. +48 32 272 20 41/236, fax +48 32 272 01 42
 
Ann. Acad. Med. Siles. 2010;64:43–53
 
KEYWORDS
ABSTRACT
Introduction:
The aim of the present paper is investigation of the volume fraction dependence of the translational diffusion coefficient for some mammalian serum albumins in aqueous solutions.

Material and Methods:
The viscosity of bovine, equine, ovine and rabbit serum albumin aqueous solutions was measured at temperatures ranging from 5oC to 45oC and in a wide range of concentrations. The measurements were performed with an Ubbelohde-type capillary microviscometer.

Results:
Translational diffusion coefficient at infinitely dilute solutions Do(T) can be calculated from generalized Stokes-Einstein equation if the hydrodynamic radius of albumin is known. It gives Do(T) in the range from 3.5×10-11 m2 /s (at 5oC) to 10.2 10-11 m2 /s (at 45oC) for bovine serum albumin, from 3.59×10-11 m2 /s (at 5oC) to 10.4 10-11 m2 /s (at 45oC) for equine serum albumin, from 3.42×10-11 m2 /s (at 5oC) to 9.92×10-11 m2 /s (at 45oC) for ovine serum albumin, and from 3.36×10-11 m2 /s (at 5oC) to 9.74×10-11 m2 /s (at 45oC) for rabbit serum albumin. Translational diffusion coefficient for higher concentrations D(T,φ) can be obtained from the relation: D(T,φ) = Do(T)Ηo(T)/Η(T,φ), where φ denotes volume fraction and Ηo(T) and Η(T,φ) are viscosities of water and solution, respectively, at temperature T.

Conclusions:
The obtained results show that the translational diffusion coefficient decreases linearly with increasing volume fraction, when φ does not exceed the value of about 0.1. The dependence of the translational diffusion coefficient on volume fraction in a broader range of φ, i.e. from dilute to concentrated solutions, is nonlinear and can be described by a stretched exponential function.

 
REFERENCES (52)
1.
Peters Jr. T. All about albumin. Biochemistry, genetics, and medical applications, in: Peters T. (Ed.), Metabolism: albumin in the body, 1996; Academic Press Limited, pp. 188-250.
 
2.
Gelamo E.L., Silva C.H.T.P., Imasato H., Tabak M. Interaction of bovine (BSA) and human (HSA) serum albumin with ionic surfactants: spectroscopy and modeling. Biochem. Biophys. Acta 2002; 1594: 84– 99.
 
3.
Petitpas I., Grüne T., Bhattacharya A.A., Curry S. crystal structures of human serum albumin complexed with monounsaturated and polyunsaturated fatty acids. J. Mol. Biol. 2001; 314: 955–960.
 
4.
He X.M., Carter D.C. Atomic structure and chemistry of human serum albumin. Nature 1992; 358: 209–215.
 
5.
Ho J.X., Holowachuk E.W., Norton P.D., Twigg P.D., Carter D.C. X-ray and primary structure of horse serum albumin (Equus caballus) at 0.27-nm resolution. Eur. J. Biochem. 1993; 215: 205–212.
 
6.
Dockal M., Carter D.C., Rüker F. The three recombinant domains of human serum albumin. J. Biol. Chem. 1999; 274: 29303–29310.
 
7.
Carter D.C., Ho J.X. Advances in protein chemistry. Vol. 45,1994, Academic Press, New York, pp. 153–203.
 
8.
Monkos K. On the hydrodynamics and temperature dependence of the solution conformation of human serum albumin from viscometry approach. Biochim. Biophys. Acta 2004; 1700: 27–34.
 
9.
Monkos K. A comparison of solution conformation and hydrodynamic properties of equine, porcine and rabbit serum albumin using viscometric measurements. Biochim. Biophys. Acta 2005; 1748: 100– 109.
 
10.
Monkos K. Determination of some hydrodynamic parameters of ovine serum albumin solutions using viscometric measurements. J. Biol. Phys. 2005; 31: 219-232.
 
11.
Moser P., Squire P.G., O’Konski C.T. Electric polarization in proteins – dielectric dispersion and Kerr eff ect. Studies of isoionic bovine serum albumin. J. Phys. Chem. 1966; 70: 744–756.
 
12.
Šoltés L., Sebille B. Reversible binding interactions between the tryptophan enantiomers and albumins of diff erent animal species as determined by novel high performance liquid chromatographic methods: an attempt to localize the D- and L-tryptophan binding sites on the human serum albumin polypeptide chain by using protein fragments. Chirality 1997; 9: 373–379.
 
13.
Miller I., Gemeiner M. An electrophoretic study on interactions of albumins of diff erent species with immobilized Cibacron Blue F3G A. Electrophoresis 1998; 19 :2506–2514.
 
14.
Dimitrova M.N., Matsumura H., Dimitrova A., Neitchev V.Z. Interaction of albumins from diff erent species with phospholipids liposomes. Multiple binding sites system. Int. J. Biol. Macromol. 2000; 27: 187–194.
 
15.
Khan R.H., Shabnum M.S. Eff ect of sugars on rabbit serum albumin stability and induction of secondary structure. Biochemistry (Moscow) 2001; 66: 1280-1285.
 
16.
Banks D.S., Fradin C. Anomalous diff usion of proteins due to molecular crowding. Biophys. J. 2005; 89: 2960–2971.
 
17.
Lavalette D., Hink M.A., Tourbez M., Tétreau C., Visser A.J. Proteins as micro viscosimeters: Brownian motion revisited. Eur. Biophys. J. 2006; 35: 517–522.
 
18.
Goins A.B., Sanabria H., Waxham M.N. Macromolecular crowding and size eff ects on probe microviscosity. Biophys. J. 2008; 95: 5362–5373.
 
19.
Saluja A., Badkar A.V., Zeng D.L., Nema S., Kalonia S.D. Ultrasonic storage modulus as a novel parameter for analyzing protein- protein interactions in high protein concentration solutions: correlation with static and dynamic light scattering measurements. Biophys. J. 2007; 92: 234–244.
 
20.
Nesmelova I.V., Skirda V.D., Fedotov V.D. Generalized concentration dependence of globular protein self-diff usion coeffi cients in aqueous solutions. Biopolymers 2002; 63: 132–140.
 
21.
Lau E.Y., Krishnan V.V. Temperature dependence of protein-hydration hydrodynamics by molecular dynamics simulations. Biophys. Chem. 2007; 130: 55–64.
 
22.
Rampp M., Buttersack C., Lüdemann H-D. c,T-dependence of the viscosity and the self-diff usion coeffi cients in some aqueous carbohydrate solutions. Carbohydr. Res. 2000; 328: 561–572.
 
23.
Gros G. Concentration dependence of the self-diff usion of human and lumricus terrestris hemoglobin. Biophys. J. 1978; 22: 453–468.
 
24.
Young M.E., Carroad P.A., Bell R.L. Estimation of diff usion coeffi cients of proteins. Biotechnol. Bioeng. 1980; 22: 947–955.
 
25.
Tyn M.T., Gusek T.D. Prediction of diffusion coeffi cients of proteins. Biotechnol. Bioeng. 1990; 35: 327–338.
 
26.
He L., Niemeyer B. A novel correlation for protein diff usion coeffi cients based on molecular weight and radius of gyration. Biotechnol. Prog. 2003; 19: 544–548.
 
27.
Banachowicz E., Gapiński J., Patkowski A. Solution structure of biopolymers: a New method of constructing a bead model. Biophys. J. 2000; 78: 70–78.
 
28.
Garcia de la Torre J., Huertas M.L., Carrasco B. Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. Biophys. J. 2000; 78: 719–730.
 
29.
Aragon S., Hahn D.K. Precise boundary element computation of protein transport properties: diff usion tensors, specifi c volume, and hydration. Biophys. J. 2006; 91: 1591–1603.
 
30.
Einstein A. Investigations on the theory of the Brovnian movement. 1956; Dover Publications, New York, pp.122.
 
31.
Landau L.D., Lifshitz E.M. Fluid Mechanics 1959; Pergamon, Oxford.
 
32.
Perrin F. Mouvement Brownien d’un ellipsoide. II. Rotation libre de depolarization des fl uorescence: Translation et diff usion de molecules ellipsoidales. J. Physique Radium 1936; 7: 1–11.
 
33.
Jachimska B., Wasilewska M., Adamczyk Z. Characterization of globular protein solutions by dynamic light scattering, electrophoretic mobility, and viscosity measurements. Langmuir 2008; 24: 6866–6872.
 
34.
Yokoyama K., Kamei T., Minami H., Suzuki M. Hydration study of globular proteins by microwave dielectric spectroscopy. J. Phys. Chem. 2001; B 105: 12622–12627.
 
35.
Kabir S.R., Yokoyama K., Mishashi K., Kodama T., Suzuki M. Hyper-mobile water is induced around actin fi laments. Biophys. J. 2003; 85: 3154–3161.
 
36.
Squire P.G., Himmel M.E. Hydrodynamics and protein hydration. Arch. Biochem. Biophys. 1979; 196: 165-177.
 
37.
Bloomfi eld V. The structure of bovine serum albumin at low pH. Biochemistry 1966; 5: 684–689.
 
38.
Li S., Xing D.A., Li J. Dynamic light scattering application to study protein interactions in electrolyte solutions. J. Biol. Phys. 2005; 30: 313–324.
 
39.
Monkos K. c,T – dependence of the translational diff usion coeffi cient for hen egg-white lysozyme in aqueous solutions obtained from viscosity measurements and generalized Stokes-Einstein relation. Curr. Top. Biophys. 2009; 32: 1–9.
 
40.
Wang J.H., Anfi nsen C.B., Polestra F.M. The self-diff usion coeffi cients of water and ovalbumin in aqueous solutions at 10oC. J. Am. Chem. Soc. 1954; 76: 4763-4765.
 
41.
Muramatsu N., Minton A.P. Tracer diffusion of globular proteins in concentrated protein solutions. Proc. Natl. Acad. Sci. USA 1988; 85: 2984-2988.
 
42.
Brown W., Stilbs P. Self-diff usion measurements on bovine serum albumin solutions and gels using a pulsed-gradient spin-echo NMR technique. Chemica Scripta 1982; 19: 161-163.
 
43.
Han J., Herzfeld J. Macromolecular diffusion in crowded solutions. Biophys. J. 1993; 65: 1155-1161.
 
44.
Xia J., Aerts T., Donceel K., Clauwaert J. Light scattering by bovine α-crystallin proteins in solution: hydrodynamic structure and interparticle interaction. Biophys. J. 1994; 66: 861-872.
 
45.
Zimmerman S.B., Minton A.P. Macromolecular crowding: biochemical, biophysical, physiological consequences. Ann. Rev. Biophys. Biomol. Struct. 1993; 22: 27-65.
 
46.
Cluzel P., Surette M., Leibler S. An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science 2000; 287: 1652-1655.
 
47.
Macnab R. Action at a distance: bacterial fl agellar assembly. Science 2000; 290: 2086-2087.
 
48.
Berry H. Monte Carlo simulations of enzyme reactions in two dimensions: fractal kinetics and spatial segregation. Biophys. J. 2002; 83: 1891-1901.
 
49.
Crick F. Diff usion in embryogenesis. Nature 1970; 225: 420-422.
 
50.
Guthold M., Zhu X., Rivetti C., Yang G., Thomson N., Kasas S., Hansma H., Smith B., Hansma P., Bustamante C. Direct observation of one-dimensional diff usion and transcription by Escheria coli RNA polymerase. Biophys. J. 1999; 77:2284- 2294.
 
51.
Gros G., Moll W. Facilitated diff usion of CO2 across albumin solutions. J. Gen. Physiol. 1974; 64: 356-371.
 
52.
Dwyer J.D., Bloomfi eld V.A. Brownian dynamics simulations of probe and self-diff usion in concentrated protein and DNA solutions. Biophys. J. 1993; 65: 1810- 1816.
 
eISSN:1734-025X