Spectroscopic study of proteins
 
More details
Hide details
1
Department of Medical Biophysics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
 
 
Corresponding author
Klaudia Kierszniok   

Katedra i Zakład Biofizyki Lekarskiej, ul. Medyków 18, 40-752 Katowice
 
 
Ann. Acad. Med. Siles. 2024;78:324-329
 
KEYWORDS
TOPICS
ABSTRACT
Proteins are macromolecular compounds made up of amino acids linked by peptide bonds. They are the basic structural component of all living organisms. Their diversity has to do with their structure, and therefore with the way the amino acid residues are arranged in the molecule. Albumin shape is determined by the sequence of amino acids that make it up. The primary amino acid in its composition is cysteine and in smaller amounts glycine, methionine and one tryptophan residue, thanks to which it exhibits fluorescent properties. For structural studies of proteins, many physical methods are used. The most commonly chosen are spectroscopic methods, which deal with the interaction between electromagnetic radiation and matter. The article provides an overview of spectroscopic methods employed in the structural studies of proteins. It also serves as a prelude to further research that aims to utilise one of the spectroscopic methods to study the structural changes of albumin after exposure to physicochemical agents. The described spectroscopic methods are characterized by different sensitivity, specificity and procedures to be performed during sample preparation for the study. In the spectroscopic study of proteins, with particular attention to changes in their structure, the method of fluorescence spectroscopy deserves attention. It is the best choice for studying structural changes in proteins that occur under the influence of physicochemical factors. Capturing these changes and relating them to the functions of proteins enriches the knowledge of the normal functioning of the body, as well as the basis of some diseases.
REFERENCES (31)
1.
Delfi M., Sartorius R., Ashrafizadeh M., Sharifi E., Zhang Y., De Berardinis P. et al. Self-assembled peptide and protein nanostructures for anti-cancer therapy: Targeted delivery, stimuli-responsive devices and immunotherapy. Nano Today 2021; 38: 101119, doi: 10.1016/j.nantod.2021.101119.
 
2.
Khan T., Ghosh I. Modularity in protein structures: study on all-alpha proteins. J. Biomol. Struct. Dyn. 2015; 33(12): 2667–2681, doi: 10.1080/07391102.2014.1003969.
 
3.
Kianfar E. Protein nanoparticles in drug delivery: animal protein, plant proteins and protein cages, albumin nanoparticles. J. Nanobiotechnology 2021; 19(1): 159, doi: 10.1186/s12951-021-00896-3.
 
4.
Vincent J.L. , Russell J.A., Jacob M., Martin G., Guidet B., Wernerman J. et al. Albumin administration in the acutely ill: what is new and where next. Crit. Care 2014; 18(4): 231, doi: 10.1186/cc13991.
 
5.
Gburek J., Gołąb K., Juszczyńska K. Renal catabolism of albumin – current views and controversies. [Article in Polish]. Postepy Hig. Med. Dosw. 2011; 65: 668–677, doi: 10.5604/17322693.964329.
 
6.
Molitoris B.A., Sandoval R.M., Yadav S.P.S., Wagner M.C. Albumin uptake and processing by the proximal tubule: physiological, pathological, and therapeutic implications. Physiol. Rev. 2022; 102(4): 1625–1667, doi: 10.1152/physrev.00014.2021.
 
7.
Konopska B., Gołąb K., Juszczyńska K., Gburek J. Albumin-based nanosystems in medicine. [Article in Polish]. Postepy Hig. Med. Dosw. 2018; 72: 1004–1017, doi: 10.5604/01.3001.0012.7748.
 
8.
Yu Y.T., Liu J., Hu B., Wang R.L., Yang X.H. et al. Expert consensus on the use of human serum albumin in critically ill patients. Chin. Med. J. 2021; 134(14): 1639–1654, doi: 10.1097/CM9.0000000000001661.
 
9.
Ding B., Jasensky J., Li Y., Chen Z. Engineering and characterization of peptides and proteins at surfaces and interfaces: A case study in surface-sensitive vibrational spectroscopy. Acc. Chem. Res. 2016; 49(6): 1149–1157, doi: 10.1021/acs.accounts.6b00091.
 
10.
Zhang R., Liu S., Jin H., Luo Y., Zheng Z., Gao F. et al. Noninvasive electromagnetic wave sensing of glucose. Sensors (Basel) 2019; 19(5): 1151, doi: 10.3390/s19051151.
 
11.
Ozaki Y. Infrared Spectroscopy-mid-infrared, near-infrared, and far-infrared/terahertz spectroscopy. Anal. Sci. 2021; 37(9): 1193–1212, doi: 10.2116/analsci.20R008.
 
12.
Maiti K.S. Two-dimensional infrared spectroscopy reveals better insights of structure and dynamics of protein. Molecules 2021; 26(22): 6893, doi: 10.3390/molecules26226893.
 
13.
Clarke E.J., Lima C., Anderson J.R., Castanheira C., Beckett A., James V. et al. Anal. Methods 2022; 14(37): 3661–3670, doi: 10.1039/d2ay00779g.
 
14.
Santos M.C.D., Viana J.L.S., Monteiro J.D., Freire R.C.M., Freitas D.L.D., Câmara I.M. et al. Infrared spectroscopy (NIRS and ATR-FTIR) together with multivariate classification for non-destructive differentiation between female mosquitoes of Aedes aegypti recently infected with dengue vs. uninfected females. Acta Trop. 2022; 235: 106633, doi: 10.1016/j.actatropica.2022.106633.
 
15.
Kochan K., Bedolla D.E., Perez-Guaita D., Adegoke J.A., Chakkumpulakkal Puthan Veettil T., Martin M. et al. Infrared spectroscopy of blood. Appl. Spectrosc. 2021; 75(6): 611–646, doi: 10.1177/0003702820985856.
 
16.
Beć K.B., Grabska J., Huck C.W. Near-infrared spectroscopy in bio-applications. Molecules 2020; 25(12): 2948, doi: 10.3390/molecules25122948.
 
17.
Bulenger K., Biernacki B., Krasucka D.M., Szumiło J., Cuvelier B. Review of applications of near infrared spectroscopy in analysis of residual moisture in immunological veterinary medicinal products. [Article in Polish]. Wiad. Chem. 2016; 70(11–12): 747–759.
 
18.
Lin C.H., Chang Y.F. Comparison and characterization of pigments and dyes by Raman spectroscopy. Anal. Sci. 2022; 38(3): 483–495, doi: 10.2116/analsci.21SAR03.
 
19.
Rosenblatt R., Halámková L., Doty K.C., de Oliveira E.A.C. Jr., Lednev I.K. Raman spectroscopy for forensic bloodstain identification: Method validation vs. environmental interferences. Forensic Chem. 2019; 16: 100175, doi: 10.1016/j.forc.2019.100175.
 
20.
Butler H.J., Ashton L., Bird B., Cinque G., Curtis K., Dorney J. et al. Using Raman spectroscopy to characterize biological materials. Nat. Protoc. 2016; 11(4): 664–687, doi: 10.1038/nprot.2016.036.
 
21.
Nemecek D., Stepanek J., Thomas G.J. Jr. Raman spectroscopy of proteins and nucleoproteins. Curr. Protoc. Protein Sci. 2013; Chapter 17: Unit 17.8, doi: 10.1002/0471140864.ps1708s71.
 
22.
Chen J., Li J.Q., Li T., Liu H.G., Wang Y.Z. Application of UV-Vis and infrared spectroscopy on wild edible bolete mushrooms discrimination and evaluation: A review. Crit. Rev. Anal. Chem. 2023; 53(4): 852–868, doi: 10.1080/10408347.2021.1984870.
 
23.
Antosiewicz J.M., Shugar D. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 1: basic principles and properties of tyrosine chromophore. Biophys. Rev. 2016; 8(2): 151–161, doi: 10.1007/s12551-016-0198-6.
 
24.
Antosiewicz J.M., Shugar D. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: selected applications. Biophys. Rev. 2016; 8(2): 163–177, doi: 10.1007/s12551-016-0197-7.
 
25.
Stewart H.L., Birch D.J.S. Fluorescence guided surgery. Methods Appl. Fluoresc. 2021; 9(4), doi: 10.1088/2050-6120/ac1dbb.
 
26.
Munishkina L.A., Fink A.L. Fluorescence as a method to reveal structures and membrane-interactions of amyloidogenic proteins. Biochim. Biophys. Acta 2007; 1768(8): 1862–1885, doi: 10.1016/j.bbamem.2007.03.015.
 
27.
Bindels D.S., Haarbosch L., van Weeren L., Postma M., Wiese K.E., Mastop M. et al. mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nat. Methods 2017; 14(1): 53–56, doi: 10.1038/nmeth.4074.
 
28.
Kalyagin A., Antina L., Ksenofontov A., Antina E., Berezin M. et al. Solvent-dependent fluorescence properties of CH2-bis(BODIPY)s. Int. J. Mol. Sci. 2022; 23(22): 14402, doi: 10.3390/ijms232214402.
 
29.
Dreydoppel M., Balbach J., Weininger U. Monitoring protein unfolding transitions by NMR-spectroscopy. J. Biomol. NMR 2022; 76(1–2): 3–15, doi: 10.1007/s10858-021-00389-3.
 
30.
Agarwal V., Penzel S., Szekely K., Cadalbert R., Testori E., Oss A. et al. De novo 3D structure determination from sub-milligram protein samples by solid-state 100 kHz MAS NMR spectroscopy. Angew. Chem. Int. Ed. Engl. 2014; 53(45): 12253–12256, doi: 10.1002/anie.201405730.
 
31.
Larsen M.T., Kuhlmann M., Hvam M.L., Howard K.A. Albumin-based drug delivery: harnessing nature to cure disease. Mol. Cell. Ther. 2016; 4: 3, doi: 10.1186/s40591-016-0048-8.
 
eISSN:1734-025X
Journals System - logo
Scroll to top