The use of viruses in anti-cancer therapies – new achievements and challenges
 
More details
Hide details
1
Students’ Scientific Club at the Department of Environmental Medicine and Epidemiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
 
2
Department of Environmental Medicine and Epidemiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
 
 
Corresponding author
Małgorzata Grudnik   

Studenckie Koło Naukowe przy Katedrze i Zakładzie Epidemiologii i Medycyny Środowiskowej, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach, ul. Jordana 19, 41-808 Zabrze
 
 
Ann. Acad. Med. Siles. 2024;2(nr specj.):20-26
 
KEYWORDS
TOPICS
ABSTRACT
Viruses are gaining pivotal significance in innovative therapeutic strategies, underscoring their growing role in the field of oncology. The utilization of oncolytic viruses for the selective recognition and effective elimination of cancerous cells has captured the interest of scientists for many years. Due to the unique features of their application, such as greater patient comfort compared to the use of conventional therapies alone, a positive response of the body to treatment, and improved patient survival rates, virus-based therapies may become a pivotal pillar of modern oncology in future, particularly when integrated into combination therapies. It is assumed that further research into the specifics of viruses and their interactions will enable the development of more precise and effective immunotherapies targeted at cancers. However, considering the dynamic nature of these strategies, simultaneous rigorous monitoring of the potential hazards associated with virus application is imperative to ensure patient safety and further advancements in oncology. This review focuses on the analysis of virus application in cancer therapy and the emerging challenges related to clinical studies, placing particular emphasis on their specificity, versatility, and the direction in which modern forms of therapy are heading.
 
REFERENCES (37)
1.
Alemany R. Viruses in cancer treatment. Clin. Transl. Oncol. 2013; 15(3): 182–188.
 
2.
Kelly E., Russell S.J. History of oncolytic viruses: genesis to genetic engineering. Mol. Ther. 2007; 15(4): 651–659, doi: 10.1038/sj.mt.6300108.
 
3.
Galon J., Bruni D. Tumor immunology and tumor evolution: intertwined histories. Immunity 2020; 52(1): 55–81, doi: 10.1016/j.immuni.2019.12.018.
 
4.
Jak chronić się przed zachorowaniem na nowotwory. Gov.pl, 13.08.2018 [online] https://www.gov.pl/web/zdrowie... [accessed on 12 September 2024].
 
5.
Baza danych o nowotworach. Krajowy Rejestr Nowotworów [online] https://onkologia.org.pl [accessed on 12 September 2024].
 
6.
Cervical cancer – Overview. World Health Organization [online] https://www.who.int/health-top... [accessed on 12 September 2024].
 
7.
Li Z., Jiang Z., Zhang Y., Huang X., Liu Q. Efficacy and safety of oncolytic viruses in randomized controlled trials: a systematic review and meta-analysis. Cancers 2020; 12(6): 1416, doi: 10.3390/cancers12061416.
 
8.
Aldrak N., Alsaab S., Algethami A., Bhere D., Wakimoto H., Shah K. et al. Oncolytic herpes simplex virus-based therapies for cancer. Cells 2021; 10(6): 1541, doi: 10.3390/cells10061541.
 
9.
Braidwood L., Dunn P.D., Hardy S., Evans T.R., Brown S.M. Antitumor activity of a selectively replication competent herpes simplex virus (HSV) with enzyme prodrug therapy. Anticancer Res. 2009; 29(6): 2159–2166.
 
10.
Hong B., Sahu U., Mullarkey M.P., Kaur B. Replication and spread of oncolytic herpes simplex virus in solid tumors. Viruses 2022; 14(1): 118, doi: 10.3390/v14010118.
 
11.
Chou J., Kern E.R., Whitley R.J., Roizman B. Mapping of herpes simplex virus-1 neurovirulence to γ134.5, a gene nonessential for growth in culture. Science 1990; 250(4985): 1262–1266, doi: 10.1126/science.2173860.
 
12.
Lauer U.M., Beil J. Oncolytic viruses: challenges and considerations in an evolving clinical landscape. Future Oncol. 2022; 18(24): 2713–2732, doi: 10.2217/fon-2022-0440.
 
13.
Li M., Li G., Kiyokawa J., Tirmizi Z., Richardson L.G., Ning J. et al. Characterization and oncolytic virus targeting of FAP-expressing tumor-associated pericytes in glioblastoma. Acta Neuropathol. Commun. 2020; 8(1): 221, doi: 10.1186/s40478-020-01096-0.
 
14.
Kambara H., Okano H., Chiocca E.A., Saeki Y. An oncolytic HSV-1 mutant expressing ICP34.5 under control of a nestin promoter increases survival of animals even when symptomatic from a brain tumor. Cancer Res. 2005; 65(7): 2832–2839, doi: 10.1158/0008-5472.CAN-04-3227.
 
15.
Askari F.S., Mohebbi A., Ning J., Kurozumi K., Wakimoto H. Recent advances in oncolytic virus therapy for brain tumors. Front. Cell. Infect. Microbiol. 2023; 13: 1271559, doi: 10.3389/fcimb.2023.1271559.
 
16.
Sakhawat A., Ma L., Muhammad T., Khan A.A., Chen X., Huang Y. A tumor targeting oncolytic adenovirus can improve therapeutic outcomes in chemotherapy resistant metastatic human breast carcinoma. Sci. Rep. 2019; 9(1): 7504, doi: 10.1038/s41598-019-43668-8.
 
17.
Gayral M., Lulka H., Hanoun N., Biollay C., Sèlves J., Vignolle-Vidoni A. et al. Targeted oncolytic herpes simplex virus type 1 eradicates experimental pancreatic tumors. Hum. Gene Ther. 2015; 26(2): 104–113, doi: 10.1089/hum.2014.072.
 
18.
Hirooka Y., Kasuya H., Ishikawa T., Kawashima H., Ohno E., Villalobos I.B. et al. A Phase I clinical trial of EUS-guided intratumoral injection of the oncolytic virus, HF10 for unresectable locally advanced pancreatic cancer. BMC Cancer 2018; 18(1): 596, doi: 10.1186/s12885-018-4453-z.
 
19.
Garofalo M., Villa A., Rizzi N., Kuryk L., Mazzaferro V., Ciana P. Systemic administration and targeted delivery of immunogenic oncolytic adenovirus encapsulated in extracellular vesicles for cancer therapies. Viruses 2018; 10(10): 558, doi: 10.3390/v10100558.
 
20.
Chianese A., Santella B., Ambrosino A., Stelitano D., Rinaldi L., Galdiero M. et al. Oncolytic viruses in combination therapeutic approaches with epigenetic modulators: past, present, and future perspectives. Cancers 2021; 13(11): 2761, doi: 10.3390/cancers13112761.
 
21.
Chiocca E.A., Rabkin S.D. Oncolytic viruses and their application to cancer immunotherapy. Cancer Immunol. Res. 2014; 2(4): 295–300, doi: 10.1158/2326-6066.CIR-14-0015.
 
22.
Finn O.J. Immunooncology: understanding the function and dysfunction of the immune system in cancer. Ann. Oncol. 2012; 23(Suppl 8): viii6–viii9, doi: 10.1093/annonc/mds256.
 
23.
Mackiewicz J., Mackiewicz A. Immunotherapy of cancer and perspectives of its development. [Article in Polish]. Współcz. Onkol. 2010; 14(2): 59–71.
 
24.
Schiliro C., Firestein B.L. Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation. Cells 2021; 10(5): 1056, doi: 10.3390/cells10051056.
 
25.
Maude S.L., Laetsch T.W., Buechner J., Rives S., Boyer M., Bittencourt H. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 2018; 378(5): 439–448, doi: 10.1056/NEJMoa1709866.
 
26.
Arneth B. Tumor microenvironment. Medicina 2019; 56(1): 15, doi: 10.3390/medicina56010015.
 
27.
Kankeu Fonkoua L.A., Sirpilla O., Sakemura R., Siegler E.L., Kenderian S.S. CAR T cell therapy and the tumor microenvironment: Current challenges and opportunities. Mol. Ther. Oncolytics 2022; 25: 69–77, doi: 10.1016/j.omto.2022.03.009.
 
28.
Kakarla S., Chow K.K., Mata M., Shaffer D.R., Song X.T., Wu M.F. et al. Antitumor effects of chimeric receptor engineered human T cells directed to tumor stroma. Mol. Ther. 2013; 21(8): 1611–1620, doi: 10.1038/mt.2013.110.
 
29.
Mardi A., Shirokova A.V., Mohammed R.N., Keshavarz A., Zekiy A.O., Thangavelu L. et al. Biological causes of immunogenic cancer cell death (ICD) and anti-tumor therapy; Combination of oncolytic virus-based immunotherapy and CAR T-cell therapy for ICD induction. Cancer Cell Int. 2022; 22(1): 168, doi: 10.1186/s12935-022-02585-z.
 
30.
Evgin L., Huff A.L., Wongthida P., Thompson J., Kottke T., Tonne J. et al. Oncolytic virus-derived type I interferon restricts CAR T cell therapy. Nat. Commun. 2020; 11(1): 3187, doi: 10.1038/s41467-020-17011-z.
 
31.
Tang X.Y., Ding Y.S., Zhou T., Wang X., Yang Y. Tumor-tagging by oncolytic viruses: a novel strategy for CAR-T therapy against solid tumors. Cancer Lett. 2021; 503: 69–74, doi: 10.1016/j.canlet.2021.01.014.
 
32.
Tang X., Li Y., Ma J., Wang X., Zhao W., Hossain M.A. et al. Adenovirus-mediated specific tumor tagging facilitates CAR-T therapy against antigen-mismatched solid tumors. Cancer Lett. 2020; 487: 1–9, doi: 10.1016/j.canlet.2020.05.013.
 
33.
Park A.K., Fong Y., Kim S.I., Yang J., Murad J.P., Lu J. et al. Effective combination immunotherapy using oncolytic viruses to deliver CAR targets to solid tumors. Sci. Transl. Med. 2020; 12(559): eaaz1863, doi: 10.1126/scitranslmed.aaz1863.
 
34.
Farran B., Pavitra E., Kasa P., Peela S., Raju G.S.R., Nagaraju G.P. Folate-targeted immunotherapies: passive and active strategies for cancer. Cytokine Growth Factor Rev. 2019; 45: 45–52, doi: 10.1016/j.cytogfr.2019.02.001.
 
35.
Kim R., Trubetskoy A., Suzuki T., Jenkins N.A., Copeland N.G., Lenz J. Genome-based identification of cancer genes by proviral tagging in mouse retrovirus-induced T-cell lymphomas. J. Virol. 2003; 77(3): 2056–2062, doi: 10.1128/jvi.77.3.2056-2062.2003.
 
36.
Zhang J., Liu Z., Zhang Q.Y., Wang T., Wang J., Shi F. et al. Successful treatment of a 19-year-old patient with locally advanced clear cell adenocarcinoma of the uterine cervix using recombinant human adenovirus type 5 (Oncorine) combined with chemoradiotherapy: a case report. Ann. Transl. Med. 2021; 9(23): 1747, doi: 10.21037/atm-21-5963.
 
37.
Pol J., Kroemer G., Galluzzi L. First oncolytic virus approved for melanoma immunotherapy. Oncoimmunology 2015; 5(1): e1115641, doi: 10.1080/2162402X.2015.1115641.
 
eISSN:1734-025X
Journals System - logo
Scroll to top