Which factors affect electrophysiological parameters in patients undergoing surgery for carpal tunnel syndrome?
 
More details
Hide details
1
Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
 
2
Department of Trauma and Orthopedic Surgery, Silesian Hospital in Cieszyn, Poland
 
3
Department of Informatics and Medical Equipment, Faculty of Biomedical Engineering, Silesian University of Technology, Gliwice, Poland
 
4
Student Scientific Association at the Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
 
 
Corresponding author
Krzysztof Wierzbicki   

Katedra i Klinika Neurologii, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach, ul. 3 Maja 13, 41-800 Zabrze
 
 
Ann. Acad. Med. Siles. 2023;77:182-189
 
KEYWORDS
TOPICS
ABSTRACT
Introduction:
Carpal tunnel syndrome (CTS) is an upper limb neuropathy that occurs as a result of compression of the median nerve in the carpal tunnel and is the most common mononeuropathy in the general population. The aim of the study was to assess the electrophysiological parameters of the median nerve before and 6 months after surgical treatment of CTS in patients with a history of smoking and comorbidities.

Material and methods:
84 patients with CTS who were eligible for surgery were enrolled in this prospective study. Electrophysiological tests were performed in the patients before and 6 months after surgery for CTS.

Results:
The results of the study prove that smoking and diabetes significantly worsen the electrophysiological parameters in patients undergoing surgical treatment of CTS.

Conclusions:
Smoking and diabetes cause a significantly worse prognosis in patients after surgery for CTS.

ACKNOWLEDGEMENTS
The authors would like to thank Assistant Professor Arkadiusz Badziński, PhD, DHSc, for the translation of the manuscript.
REFERENCES (37)
1.
Makowiec-Dąbrowska T., Sińczuk-Walczak H., Jóźwiak Z.W., Krawczyk-Adamus P. Work performance as a risk factor for carpal tunnel syndrome. [Article in Polish]. Med. Pr. 2007; 58(4): 361–372.
 
2.
Gelberman R.H., Szabo R.M., Williamson R.V., Hargens A.R., Yaru N.C., Minteer-Convery M.A. Tissue pressure threshold for peripheral nerve viability. Clin. Orthop. Relat. Res. 1983; 178: 285–291.
 
3.
Atroshi I., Gummesson C., Johnsson R., Ornstein E., Ranstam J., Rosén I. Prevalence of carpal tunnel syndrome in a general population. JAMA 1999; 282(2): 153−158, doi: 10.1001/jama.282.2.153.
 
4.
Ciechanowska K., Łukowicz M. Carpal Tunnel Syndrome – etiology and diagnostics. J. Educ. Health Sport 2017; 7(4): 622−638.
 
5.
Biernawska J., Niemczyk A., Pierzchała K. Contribution of occupational and non-occupational factors in the pathogenesis of carpal tunnel syndrome. [Article in Polish]. Med. Pr. 2005; 56(2): 131−137.
 
6.
Georgiew F., Otfinowska E., Adamczyk T. Diagnostic tests used in diagnosis of carpal tunnel syndrome. Med. Rehabil. 2008; 12(3): 7–17.
 
7.
Georgiew F. Provocative tests used in the diagnosis of carpal tunnel syndrome. Med. Rehabil. 2007; 11(4): 15−25.
 
8.
Żyluk A., Puchalski P., Nawrot P. Przydatność badania USG w diagnostyce zespołu kanału nadgarstka – przegląd piśmiennictwa. Chir. Narzadow Ruchu Ortop. Pol. 2010; 75(6): 385−391.
 
9.
Domanasiewicz A., Koszewicz M., Jabłecki J. Comparison of the diagnostic value of ultrasonography and neurography in carpal tunnel syndrome. Neurol. Neurochir. Pol. 2009; 43(5): 433−438.
 
10.
Kinalski R. Urządzenia i testy instrumentalne. In: Neurofizjologia kliniczna dla neurorehabilitacji: podręcznik dla studentów i absolwentów wydziałów fizjoterapii. MedPharm. Wrocław 2008, pp. 194–201.
 
11.
Vogel P. Neurofizjologia kliniczna. Elsevier Urban & Partner. Wrocław 2010.
 
12.
Osiak K., Mazurek A., Pękala P., Koziej M., Walocha J.A., Pasternak A. Electrodiagnostic studies in the surgical treatment of carpal tunnel syndrome – A systematic review. J. Clin. Med. 2021; 10(12): 2691, doi: 10.3390/jcm10122691.
 
13.
Uchiyama S., Itsubo T., Nakamura K., Kato H., Yasutomi T., Momose T. Current concepts of carpal tunnel syndrome: pathophysiology, treatment, and evaluation. J. Orthop. Sci. 2010; 15(1): 1–13, doi: 10.1007/s00776-009-1416-x.
 
14.
Zamborsky R., Kokavec M., Simko L., Bohac M. Carpal tunnel syndrome: symptoms, causes and treatment options. Literature reviev. Ortop. Traumatol. Rehabil. 2017; 19(1): 1−8, doi: 10.5604/15093492.1232629.
 
15.
Tecchio F., Padua L., Aprile I., Rossini P.M. Carpal tunnel syndrome modifies sensory hand cortical somatotopy: a MEG study. Hum. Brain Mapp. 2002; 17(1): 28–36, doi: 10.1002/hbm.10049.
 
16.
Padua L., Padua R., Lo Monaco M., Aprile I., Tonali P. Multiperspective assessment of carpal tunnel syndrome: a multicenter study. Neurology 1999; 53(8): 1654–1659, doi: 10.1212/wnl.53.8.1654.
 
17.
Huisstede B.M., Fridén J., Coert J.H., Hoogvliet P. Carpal tunnel syndrome: hand surgeons, hand therapists, and physical medicine and rehabilitation physicians agree on a multidisciplinary treatment guideline − results from the European HANDGUIDE Study. Arch. Phys. Med. Rehabil. 2014; 95(12): 2253–2263, doi: 10.1016/j.apmr.2014.06.022.
 
18.
Padua L., Coraci D., Erra C., Pazzaglia C., Paolasso I., Loreti C. et al. Carpal tunnel syndrome: clinical features, diagnosis, and management. Lancet Neurol. 2016; 15(12): 1273−1284, doi: 10.1016/S1474-4422(16)30231-9.
 
19.
Yamagishi S., Nakamura K., Imaizumi T. Advanced glycation end products (AGEs) and diabetic vascular complications. Curr. Diabetes Rev. 2005; 1(1): 93−106, doi: 10.2174/1573399052952631.
 
20.
Wang L. Guiding treatment for carpal tunnel syndrome. Phys. Med. Rehabil. Clin. N. Am. 2018; 29(4): 751−760, doi: 10.1016/j.pmr.2018.06.009.
 
21.
Jerosch-Herold C., Shepstone L., Houghton J., Wilson E.C.F., Blake J. Prognostic factors for response to treatment by corticosteroid injection or surgery in carpal tunnel syndrome (palms study): A prospective multicenter cohort study. Muscle Nerve 2019; 60(1): 32−40, doi: 10.1002/mus.26459.
 
22.
Shiri R. Hypothyroidism and carpal tunnel syndrome: a meta-analysis. Muscle Nerve 2014; 50(6): 879–883, doi: 10.1002/mus.24453.
 
23.
Padua L., Di Pasquale A., Pazzaglia C., Liotta G.A., Librante A., Mondelli M. Systematic review of pregnancy-related carpal tunnel syndrome. Muscle Nerve 2010; 42(5): 697–702, doi: 10.1002/mus.21910.
 
24.
Pourmemari M.H., Shiri R. Diabetes as a risk factor for carpal tunnel syndrome: a systematic review and meta-analysis. Diabet. Med. 2016; 33(1): 10–16, doi: 10.1111/dme.12855.
 
25.
Shiri R., Pourmemari M.H., Falah-Hassani K., Viikari-Juntura E. The effect of excess body mass on the risk of carpal tunnel syndrome: a meta-analysis of 58 studies. Obes. Rev. 2015; 16(12): 1094–1104, doi: 10.1111/obr.12324.
 
26.
Shiri R., Falah-Hassani K. Computer use and carpal tunnel syndrome: A meta-analysis. J. Neurol. Sci. 2015; 349(1–2): 15–19, doi: 10.1016/j.jns.2014.12.037.
 
27.
Uszkodzenia nerwów obwodowych: rozpoznawanie i leczenie. M. Mumenthaler, H. Schliack [ed.]. Wyd. Lekarskie PZWL. Warszawa 1998.
 
28.
Shiri R., Heliövaara M., Moilanen L., Viikari J., Liira H., Viikari-Juntura E. Associations of cardiovascular risk factors, carotid intima-media thickness and manifest atherosclerotic vascular disease with carpal tunnel syndrome. BMC Musculoskelet. Disord. 2011; 12: 80, doi: 10.1186/1471-2474-12-80.
 
29.
Eliasson B. Cigarette smoking and diabetes. Prog. Cardiovasc. Dis. 2003; 45(5): 405−413, doi: 10.1053/pcad.2003.00103.
 
30.
Tesfaye S., Chaturvedi N., Eaton S.E., Ward J.D., Manes C., Ionescu-Tirgoviste C. et al. Vascular risk factors and diabetic neuropathy. N. Engl. J. Med. 2005; 352(4): 341–350, doi: 10.1056/NEJMoa032782.
 
31.
Mitchell B.D., Hawthorne V.M., Vinik A.I. Cigarette smoking and neuropathy in diabetic patients. Diabetes Care 1990; 13(4): 434−437, doi: 10.2337/diacare.13.4.434.
 
32.
Uruska A., Araszkiewicz A., Uruski P., Zozulinska-Ziolkiewicz D. Higher risk of microvascular complications in smokers with type 1 diabetes despite intensive insulin therapy. Microvasc. Res. 2014; 92: 79−84, doi: 10.1016/j.mvr.2014.01.002.
 
33.
Sharma D., Jaggi A.S., Bali A. Clinical evidence and mechanisms of growth factors in idiopathic and diabetes-induced carpal tunnel syndrome. Eur. J. Pharmacol. 2018; 837: 156−163, doi: 10.1016/j.ejphar.2018.08.017.
 
34.
De Kleermaeker F.G.C.M., Meulstee J., Bartels R.H.M.A., Verhagen W.I.M. Long-term outcome after carpal tunnel release and identification of prognostic factors. Acta Neurochir. (Wien) 2019; 161(4): 663−671, doi: 10.1007/s00701-019-03839-y.
 
35.
Greene D.A., Lattimer S.A., Sima A.A. Sorbitol, phosphoinositides and sodium-potassium-ATPase in the pathogenesis of diabetic complications. N. Engl. J. Med. 1987; 316(10): 599–606, doi: 10.1056/NEJM198703053161007.
 
36.
Szczyrba S., Kozera G., Bieniaszewski L., Nyka W.M. Diabetic neuropathy – pathogenesis, diagnostic methods, prevention and treatment. [Article in Polish]. Forum Med. Rodz. 2010; 4(5): 339–355.
 
37.
Henderson E.A. Role of diabetic microvascular disease in the development of foot wounds. J. Wound Care 2007; 16(6): 275−278, doi: 10.12968/jowc.2007.16.6.27067.
 
eISSN:1734-025X
Journals System - logo
Scroll to top