The influence of rs2273773 and rs7895833 SIRT1 gene polymorphisms on life expectancy in context of metabolic factors in Silesian population
More details
Hide details
Katedra i Klinika Chorób Wewnętrznych, Diabetologii i Nefrologii, Wydział Lekarski z Oddziałem Lekarsko-Dentystycznym w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach
Corresponding author
Wladyslaw Jan Grzeszczak   

Katedra i Klinika Chorób Wewnętrznych, Diabetologii i Nefrologii, Wydział Lekarski z Oddziałem Lekarsko-Dentystycznym w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach
Ann. Acad. Med. Siles. 2017;71:162-172
Currently, increasingly more genetic variants with an influence on longevity are being sought. One of these is the SIRT1 gene which codes proteins called sirtuins. Regulating transcription, maintaining genomic stability and affecting carbohydrate-lipid metabolism, sirtuins are thought to be longevity enzymes.

Aim of the study:
The aim of the study is to demonstrate the potential relationship between rs2273773 and rs7895833 SIRT1 gene polymorphisms and longevity in the context of metabolic disorders.

Material and methods:
The study encompassed a total of 448 consecutive patients from Southern Poland. The subjects were divided into 2 groups based on age and metabolic disorders. Genotyping of SIRT1 gene polymorphisms was performed using fluorescence-labelled probes and ready-to-use single nucleotide polymorphism determination sets - the TaqMan Pre-designed SNP Genotyping Assay (Applied Biosystems). The Statistica 9.0 program was used for statistical computations.

In the case of the rs2273773 polymorphism, the prevalence of the TT genotype in the study group was 86.93%, CT 13.07%, CC 0.00%, and TT 91.19%, CT 8.47%, CC 0.34% in the control group. In the case of the rs7895833 polymorphism, the distribution of genotypes in the study group was as follows: AA 67.32%, AG 28.76%, GG 3.92%, and AA 68.47%, AG 28.47% GG 3.05% in the control group.

No relationship was demonstrated between SIRT1 gene polymorphisms and life expectancy in the Upper Silesian residents.

Weinert B.T., Timiras P.S. Invited review: Theories of aging. J. Appl. Physiol. 2003; 95(4): 1706–1716.
Blagosklonny M.V., Campisi J., Sinclair D.A. Aging: past, present and future. Aging (Albany NY) 2009; 1(1): 1–5.
Duan W. Sirtuins: from metabolic regulation to brain aging. Front. Aging Neurosci. 2013; 5: 36. doi: 10.3389/fnagi.2013.00036.
Afshar G., Murnane J.P. Characterization of a human gene with sequence homology to Saccharomyces cerevisiae SIR2. Gene 1999; 234(1): 161–168.
Frye R.A. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem. Biophys. Res. Commun. 1999; 260(1): 273–279.
Wilson B.J., Tremblay A.M., Deblois G., Sylvain-Drolet G., Giguère V. An acetylation switch modulates the transcriptional activity of estrogen-related receptor alpha. Mol. Endocrinol. 2010; 24(7): 1349–1358. doi: 10.1210/me.2009-0441.
Rodgers J.T., Lerin C., Haas W., Gygi S.P., Spiegelman B.M., Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC--1alpha and SIRT1. Nature 2005; 434(7029): 113–118. doi: 10.1038/nature03354.
Nemoto S., Fergusson M.M., Finkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J. Biol. Chem. 2005; 280(16): 16456–16460. doi:10.1074/jbc.M501485200.
Motta M.C., Divecha N., Lemieux M., Kamel C., Chen D., Gu W., Bultsma Y., McBurney M., Guarente L. Mammalian SIRT1 represses forkhead transcription factors." Cell 2004; 116(4): 551–563.
Haigis M.C., Guarente L.P. Mammalian sirtuins – emerging roles in physiology, aging, and calorie restriction. Genes Dev. 2006; 20(21): 2913–2921. doi: 10.1101/gad.1467506.
Gong H., Pang J., Han Y., Dai Y., Dai D., Cai J., Zhang T.M. Age-dependent tissue expression patterns of Sirt1 in senescence-accelerated mice. Mol. Med. Res. 2014; 10(6): 3296–3302.
Blander G., Guarente L. The Sir2 family of protein deacetylases. Annu. Rev. Biochem. 2004; 73: 417–435.
Wang J., Ho L., Qin W., Rocher A.B., Seror I., Humala N., Maniar K., Dolios G., Wang R., Hof P.R., Pasinetti G.M. Caloric restriction attenuates beta-amyloid neuropathology in a mouse model of Alzheimer’s disease. FASEB J. 2005; 19(6): 659–661. doi: 10.1096/fj.04-3182fje.
Bordone L., Motta M.C., Picard F., Robinson A., Jhala U.S., Apfeld J., McDonagh T., Lemieux M., McBurney M., Szilvasi A., Easlon E.J., Lin S.J., Guarente L. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol 2006; 4(2): e31.
Picard F., Kurtev M., Chung N., Topark-Ngarm A., Senawong T., Machado De Oliveira R., Leid M., McBurney M.W., Guarente L. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004; 429(6993): 771–776.
Liu Y. Dentin R., Chen D., Hedrick S., Ravnskjaer K., Schenk S., Milne J., Meyers D.J., Cole P., Yates J. 3rd, Olefsky J., Guarente L., Montminy M. A fasting inducible switch modulates gluconeogenesis via activator/coacti-vator exchange. Nature 2008; 456(7219): 269–273.
Li X., Zhang S., Blander G., Tse J.G., Krieger M., Guarente L. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol. Cell. 2007; 28(1): 91–106.
Kilic U., Gok O., Erenberk U., Dundaroz M.R., Torun E., Kucukardali Y., Elibol-Can B., Uysal O., Dundar T. A Remarkable Age-Related Increase in SIRT1 Protein Expression against Oxidative Stress in Elderly: SIRT1 Gene Variants and Longevity in Human. PloS One 2015; 10(3): e0117954.
Wieczorowska-Tobis K., Grześkowiak E. Farmakoterapia geriatryczna. Czasopismo Aptekarskie 2008; 2(170): 12–15.
Mishra B.N. Secret of eternal youth; Teaching from the centenarian hot spots (“blue zones”). Indian J. Community Med. 2009; 34(4): 273–275.
Botden I.P., Zillikens M.C., de Rooij S.R., Langendonk J.G., Danser A.H. Sijbrands E.J., Roseboom T.J. Variants in the SIRT1 gene may affect diabetes risk in interaction with prenatal exposure to famine. Diabetes Care 2012; 35(2): 424–426. doi: 10.2337/dc11-1203.
Clark S.J., Falchi M., Olsson B., Jacobson P., Cauchi S., Balkau B., Marre M., Lantieri O., Andersson J.C., Jernås M., Aitman T.J., Richardson S., Sjöström L., Wong H.Y., Carlsson L.M., Froguel P., Walley A.J. Association of sirtuin 1 (SIRT1) gene SNPs and transcript expression levels with severe obesity. Obesity (Silver Spring) 2012; 20(1): 178–185. doi: 10.1038/oby.2011.200.
Cui Y., Wang H., Chen H., Pang S., Wang L., Liu D., Yan B. Genetic analysis of the SIRT1 gene promoter in myocardial infarction. Biochem. Biophys. Res. Commun. 2012; 426(2): 232–236. doi: 10.1016/j.bbrc.2012.08.071.
Harris S., E. Fox H., Wright A.F., Hayward C., Starr J.M., Whalley L.J., Deary I.J. A genetic association analysis of cognitive ability and cognitive ageing using 325 markers for 109 genes associated with oxidative stress or cognition. BMC Genet. 2007; 8: 43.
Prospective Studies Collaboration. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet 2009; 373(9669): 1083–1096.
Chen Z., Yang G., Offer A., Zhou M., Smith M., Peto R., Ge H., Yang L., Whitlock G. Body mass index and mortality in China: a 15-year prospective study of 220 000 men. Int. J. Epidemiol. 2012; 41(2): 472–481.
Shimoyama Y., Suzuki K,, Hamajima N,, Niwa T. Sirtuin 1 gene polymorphisms are associated with body fat and blood pressure in Japanese. Transl. Res. 2011; 157(6): 339–347.
Huang J., Sun L., Liu M., Zhou L., Lv Z.P., Hu C.Y., Huang Z.Z., Zheng C.G., Zhou L., Yang Z. Association between SIRT1 gene polymorphisms and longevity of populations from Yongfu region of Guangxi. Chinese Journal of Medical Genetics 2013; 30(1): 55–59.
Journals System - logo
Scroll to top