Analysis of relationship between UMOD polymorphisms rs13335818, rs4293393 and rs13333226 and risk of chronic kidney disease caused by chronic glomerulonephritis
More details
Hide details
Katedra Chorób Wewnętrznych, Diabetologii i Nefrologii, Wydział Lekarski z Oddziałem Lekarsko-Dentystycznym w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach
Katedra Nefrologii, Transplantologii i Chorób Wewnętrznych, Wydział Lekarski w Katowicach, Śląski Uniwersytet Medyczny w Katowicach
Niepubliczny Zakład Opieki Zdrowotnej Rodzinna Służba Zdrowia "Gmin-Med" Sp. z o.o. w Dobieszowicach
Katedra Nefrologii Pediatrycznej, Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu
Corresponding author
Joanna Żywiec   

Katedra Chorób Wewnętrznych, Diabetologii i Nefrologii, Wydział Lekarski z Oddziałem Lekarsko-Dentystycznym w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach, ul. 3 Maja 13/15, 41-800 Zabrze
Ann. Acad. Med. Siles. 2017;71:193-203
Chronic glomerulonephritis is one of the common causes of chronic kidney disease that can lead to end-stage renal failure and the need for renal replacement therapy. Understanding the aetiology of this disease and its risk factors can help develop new methods of early diagnosis and effective therapy. Uromodulin is a protein with a broad spectrum of activity, and is involved in the key pathways that regulate kidney homeostasis.

Aim of the study:
The aim of the study was to analyse the relationship between three selected polymorphisms (rs13335818, rs4293393 and rs13333226) of the uromodulin gene (UMOD) and the risk of chronic kidney disease caused by chronic glomerulonephritis.

Material and methods:
113 patients with chronic glomerulonephritis and eGFR < 60 ml/min/1.73 m2 (experimental group) and 196 patients from the General Outpatient Clinic without a history of renal disease and eGFR > 60 ml/min/1.73 m2 (control group) were recruited for the study. The study protocol assumed a one-time blood collection for genetic testing and serum creatinine level determination. Genetic material was isolated from the peripheral blood lymphocytes of the subjects. Genotyping of the analysed polymorphisms was performed using TaqMan SNP Genotyping Assay kits. The results were processed with statistical methods using Statistica 10 and Microsoft Office Exel 2003 software, the Mann-Whitney U test and the χ2 test. Statistical significance was adopted at p < 0.05.

No statistically significant differences in the distribution of genotypes between the experimental and control groups were found for any of the three analysed UMOD variants.

UMOD polymorphisms rs13335818, rs4293393 and rs13333226 are not associated with the risk of chronic kidney disease caused by chronic glomerulonephritis.

Kokot F., Duława J. Tamm-Horsfall protein updated. Nephron. 2000; 85(2): 97–102.
Serafini-Cessi F., Malagolini N., Cavallone D. Tamm-Horsfall glycolprotein: biology and clinical relevance. Am. J. Kidney Dis. 2003; 42(4): 658––676.
Devuyst O., Dahan K., Pirson Y. Tamm-Horsfall protein or uromodulin: new ideas about an old molecule. Nephrol. Dial. Transplant. 2005; 20(7): 1290–1294.
Vyletal P., Bleyer A.J., Kmoch S. Uromodulin biology and pathophysiology – an update. Kidney Blood Press Res. 2010; 33(6): 456–475.
Rampoldi L., Scolari F., Amoroso A., Ghiggeri G.M., Devuyst O. The rediscovery of uromodulin (Tamm–Horsfall protein): from tubulointerstitial nephropathy to chronic kidney disease. Kidney Int. 2011; 80(4): 338–347.
El-Achkar T.M., Wu X.R. Uromodulin in kidney injury: an instigator, bystander or protector? Am. J. Kidney Dis. 2012; 59(3): 452–461.
Iorember F.M., Vehaskari V.M. Uromodulin: old friend with new roles in health and disease. Pediatr. Nephrol. 2014; 29(7): 1151–1158.
Zaucke F., Boehnlein J.M., Steffens S., Polishchuk R.S., Rampoldi L., Fischer A., Pasch A., Boehm C.W., Baasner A., Attanasio M., Hoppe B., Hopfer H., Beck B.B., Sayer J.A., Hildebrandt F., Wolf M.T. Uromodulin is expressed in renal primary cilia and UMOD mutations result in decreased ciliary uromodulin expression. Hum. Mol. Genet. 2010; 19(10): 1985–1997.
Benetti E., Caridi G., Vella M.D., Rampoldi L., Ghiggeri G.M., Artifoni L., Murer L. Immature renal structures associated with a novel sequence variant. Am. J. Kid. Dis. 2009; 53(2): 327–331.
Renigunta A., Renigunta V., Saritas T., Decher N., Mutig K., Waldegger S. Tamm-Horsfall glycoprotein interacts with renal outer medullary potassium channel ROMK2 and regulates its function. J. Biol. Chem. 2011; 286(3): 2224–2235.
Zacchia M., Capasso G. The importance of uromodulin as regulator of salt reabsorption along the thick ascending limb. Nephrol. Dial. Transplant. 2015; 30(2): 158–160.
Hession C., Decker J.M., Sherblom A.P. et al. Uromodulin (Tamm-Horsfall glycoprotein): a renal ligand for lymphokines. Science 1987; 237(4821): 1479–1484.
Kreft B., Jabs W.J., Laskay T., Klinger M., Solbach W., Kumar S., van Zandbergen G. Polarized expression of Tamm-Horsfall protein by renal tubular epithelial cells activates human granulocytes. Infect. Immun. 2002; 70(5): 2650–2656.
Orskov I., Ferencz A., Orskov F. Tam-Horsfall protein or uromucoid is the normal urine slime that traps type I fimbriated Escherichia coli. Lancet 1980; 1(8173): 887.
Duncan J.L. Differential effect of Tamm-Horsfall protein on adherence of Escherichia coli to transitional epithelial cells. J. Infect. Dis. 1988; 158(6): 1379–1381.
Baldwin R.L., Chang M.P., Bramhall J., Grave S., Bonavida B., Wisnie-ski B.J. Capacity of tumor necrosis factor to bind and penetrate membranes is pH-dependent. J. Immunol. 1988; 141(7): 2352–2357.
Muchmore A.V., Decker J.M. Uromodulin: a unique 85-kilodalton immunosuppressive glycoprotein isolated from urine of pregnant women. Science 1985; 229(4712): 479–481.
Kumar S., Muchmore A. Tamm-Horsfall protein – uromodulin (1950–1990). Kidney Int. 1990; 37: 1395–1401.
Wimmer T., Cohen G., Säemann M.D., Hörl W.H. Effects of Tamm-Horsfall protein on polymorphonuclear leukocyte function. Nephrol Dial. Transplant. 2004; 19(9): 2192–2197.
Köttgen A., Glazer N.L., Dehghan A., Hwang S.J., Katz R., Li M., Yang Q., Gudnason V., Launer L.J., Harris T.B., Smith A.V., Arking D.E., Astor B.C., Boerwinkle E., Ehret G.B., Ruczinski I., Scharpf R.B., Chen Y.D., de Boer I.H., Haritunians T., Lumley T., Sarnak M., Siscovick D., Benjamin E.J., Levy D., Upadhyay A., Aulchenko Y.S., Hofman A., Rivadeneira F., Uitterlinden A.G., van Duijn C.M., Chasman D.I., Paré G., Ridker M., Kao W.H., Witteman J.C., Coresh J., Shlipak M.G., Fox C.S. Multiple loci associated with indices of renal function and chronic kidney disease. Nat. Genet. 2009; 41(6): 712–717.
Köttgen A., Hwang S.J., Larson M.G., Van Eyk J.E., Fu Q., Benjamin E.J., Dehghan A., Glazer N.L., Kao W.H., Harris T.B., Gudnason V., Shlipak M.G., Yang Q., Coresh J., Levy D., Fox C.S. Uromodulin levels associate with a common UMOD variant and risk for incident CKD. J. Am. Soc. Nephrol. 2010; 21(2): 337–344.
Padmanabhan S., Melander O., Johnson T. et al. Global BPgenCon-sortium, Genome-wide association study of blood pressure extremes identifies variant near UMOD associated with hypertension. PLoS Genet. 2010; 6(10): e1001177.
Gudbjartsson D.F., Holm H., Indridason O.S., Thorleifsson G., Edvardsson V., Sulem P., de Vegt F., d'Ancona F.C., den Heijer M., Wetzels J.F., Franzson L., Rafnar T., Kristjansson K., Bjornsdottir U.S., Eyjolfsson G.I., Kiemeney L.A., Kong A., Palsson R., Thorsteinsdottir U., Stefansson K. Association of variants at UMOD with chronic kidney disease and kidney stones-role of age and comorbid diseases. PLoS Genet. 2010; 6(7): e1001039. Erratum in: PLoS Genet. 2010; 6, 11.
Möllsten A., Torffvit O. Tamm-Horsfall protein gene is associated with distal tubular dysfunction in patients with type 1 diabetes. Scand. J. Urol. Nephrol. 2010; 44(6): 438–444.
Reznichenko A., Böger C.A., Snieder H., van den Born J., de Borst M.H., Damman J., van Dijk M.C., van Goor H., Hepkema B.G., Hillebrands J.L., Leuvenink H.G., Niesing J., Bakker S.J., Seelen M., Navis G. UMOD as a susceptibility gene for end-stage renal disease. BMC Med. Genet. 2012; 13: 78.
Böger C.A., Gorski M., Li M., Hoffmann M.M., Huang C., Yang Q., Teumer A., Krane V., O'Seaghdha C.M., Kutalik Z., Wichmann H.E., Haak T., Boes E., Coassin S., Coresh J., Kollerits B., Haun M., Paulweber B., Köttgen A., Li G., Shlipak M.G., Powe N., Hwang S.J., Dehghan A., Rivadeneira F., Uitterlinden A., Hofman A., Beckmann J.S., Krämer B.K., Witteman J., Bochud M., Siscovick D., Rettig R., Kronenberg F., Wanner C., Thadhani R.I., Heid I.M., Fox C.S., Kao W.H. Association of eGFR-related loci identified by GWAS with incident CKD and ESRD. PLoS Genet. 2011; 7(9): e1002292.
Chambers J.C., Zhang W., Lord G.M. et al. Genetic loci influencing kidney function and chronic kidney disease. Nat. Genet. 2010; 42(5): 373–375.
Pattaro C., De Grandi A., Vitart V. et al. A meta-analysis of genome-wide data from five European isolates reveals an association of COL22A1, SYT1, and GABRR2 with serum creatinine level. BMC Med. Genet. 2010; 11, 11: 41.
Vyletal P., Bleyer A.J., Kmoch S. Uromodulin biology and pathophysiology-an update. Kidney Blood Press Res. 2010; 33(6): 456–475.
Prajczer S., Heidenreich U., Pfaller W., Kotanko P., Lhotta K., Jennings P. Evidence for a role of uromodulin in chronic kidney disease progression. Nephrol. Dial. Transplant. 2010; 25(6): 1896–1903.
Jha V., Wang A.Y., Wang H. The impact of CKD identification in large countries: the burden of illness. Nephrol. Dial. Transplant 2012; 27, Suppl. 3: iii32–iii38.
Divers J., Freedman B.I. Susceptibility genes in common complex kidney disease. Curr. Opin. Nephrol. Hypertens. 2010; 19(1): 79–84.
Mancia G., de Backer G., Dominiczak A. et al. Management of arterial hypertension of the European Society of Hypertension; European Society of cardiology. 2007 Guidelines for the management of arterial hypertension; the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of cardiology (ESC). J. Hypertens. 2007; 25(6): 1105–1187.
National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation and treatment of high blood pressure in children and adolescents. Pediatrics. 2004; 114, 2 Suppl.: 555–576.
Levey A.S., Bosch J.P., Lewis J.B., Greene T., Rogers N., Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine; a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann. Int. Med. 1999; 130(6): 461–470.
Schwartz G.J., Munoz A., Schneider M.F., Mak R.H., Kaskel F., Warady B.A., Furth S.L. New equations to estimate GFR in children with CKD. J. Am. Soc. Nephrol. 2009; 20(3): 629–637.
Tsai C.Y., Wu T.H., Yu C.L., Lu J.Y., Tsai Y.Y. Increased excretions of beta2-microglobulin, IL-6, and IL-8 and decreased excretion of Tamm-Horsfall glycoprotein in urine of patients with active lupus nephritis. Nephron. 2000; 85(3): 207–214.
Stangou M., Papagianni A., Bantis C., Liakou H., Pliakos K., Giamalis P., Gionanlis L., Pantzaki A., Efstratiadis G., Memmos D. Detection of multiple cytokines in the urine of patients with focal necrotising glomerulonephritis may predict short and long term outcome of renal function. Cytokine 2012; 57(1): 120–126.
Ortega L.M., Fornoni A. Role of cytokines in the pathogenesis of acute and chronic kidney disease, glomerulonephritis, and end-stage kidney disease. Int. J. Interferon. Cytokine Mediator Res. 2010; (2): 49–62.
Karkar A. Cytokines and glomerulonephritis. Saudi. J. Kidney Dis. Transpl. 2004; (15): 473–485.
Ozen S., Saatci O., Tinaztepe K., Bakkaloglu A., Barut A. Urinary tumor necrosis factor levels in primary glomerulopathies. Nephron. 1994; (66): 291–294.
Anders D., Thoenes W. Fine structural evidence of Tamm-Horsfall protein as a constituent of tubular casts in the nephrotic syndrome. Contrib. Nephrol. 1981; (24): 42–52.
Navarro-Muñoz M., Ibernon M., Bonet J., Pérez V., Pastor M.C., Bayés B., Casado-Vela J., Navarro M., Ara J., Espinal A., Fluvià L., Serra A., López D., Romero R. Uromodulin and α(1)-antitrypsin urinary peptide analysis to differentiate glomerular kidney diseases. Kidney Blood Press Res. 2012; 35(5): 314-325.
Wu J., Wang N., Wang J., Xie Y., Li Y., Liang T., Wang J., Yin Z., He K., Chen X. Identification of a uromodulin fragment for diagnosis of IgA nephropathy. RapidCommun Mass Spectrom. 2010; 24(14): 1971–1978.
Schmid M., Prajczer S., Gruber L.N., Bertocchi C., Gandini R., Pfaller W., Jennings P., Joannidis M. Uromodulin facilitates neutrophil migration across renal epithelial monolayers. Cell. Physiol. Biochem. 2010; 26(3): 311––318.
Liu Y., El-Achkar T.M., Wu X.R. Tamm-Horsfall protein regulates circulating and renal cytokines by affecting glomerular filtration rate and acting as a urinary cytokine trap. J. Biol. Chem. 2012; 287(20): 16365–16378.
Olczak T., Olczak M., Kubicz A., Duława J., Kokot F. Composition of the sugar moiety of Tamm-Horsfall protein in patients with urinary diseases. Int. J. Clin. Lab. Res. 1999; 29(2): 68–74.
48. =jeales&hgS_otherUserSessionName=UMOD%2Drs13335818 [dostęp ].
Gerstein M.B., Kundaje A., Hariharan M. et al. Architecture of the human regulatory network derived from ENCODE data. Nature 2012; 489(7414): 91–100.
Trudu M., Janas S., Lanzani C., Debaix H., Schaeffer C., Ikehata M., Citterio L., Demaretz S., Trevisani F., Ristagno G., Glaudemans B., Laghmani K., Dell'Antonio G. Swiss Kidney Project on Genes in Hypertension (SKIPOGH) team, Loffing J., Rastaldi M.P., Manunta P., Devuyst O., Rampoldi L. Common noncoding UMOD gene variants induce salt-sensitive hypertension and kidney damage by increasing uromodulin expression. Nat Med. 2013; 19(12): 1655–1660.
Olden M., Corre T., Hayward C. et al. Common variants in UMOD associate with urinary uromodulin levels: a meta-analysis. J. Am. Soc. Nephrol. 2014; 25(8): 1869–1882.
Journals System - logo
Scroll to top