Selected polymorphisms of VEGF gene in chronic renal failure
More details
Hide details
Katedra Chorób Wewnętrznych, Diabetologii i Nefrologii, Wydział Lekarski z Oddziałem Lekarsko-Dentystycznym w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach
Katedra i Klinika Nefrologii Pediatrycznej, Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu
Corresponding author
Joanna Żywiec   

Katedra Chorób Wewnętrznych, Diabetologii i Nefrologii, Wydział Lekarski z Oddziałem Lekarsko-Dentystycznym w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach, ul. 3-Maja 13/15, 41-800 Zabrze
Ann. Acad. Med. Siles. 2018;72:267-272
Understanding the complex etiopathogenesis of chronic kidney disease (CKD) raises hopes for the development of effective methods for its early diagnosis and effective prevention and treatment. The significance of genetic predisposition in renal damage development has been proven in many studies. The objective of our study was to estimate the connections between selected VEGF polymorphisms and the incidence of chronic renal failure.

Material and methods:
103 families, consisting of both parents and affected offspring with CKD stage below 3, i.e. eGFR below 60 ml/min/1.73 m2, participated our study. The mean age of the children was 15.2 years and mean eGFR 28.9 ml/min/1.73 m2. The main reason for renal damage was interstitial nephropathy (71%) and the second (29%) – chronic glomerulonephritis. 45% of patients were conservatively treated, while others remained on chronic renal replacement therapy. Venous blood samples were collected for DNA isolation. Selected VEGF polymorphisms were genotyped by the TaqMan method. The obtained results were analyzed on the basis of Statistica 10 and Microsoft Office Excel 2003 software using the transmission disequilibrium test (TDT), χ2 test and the Kaplan-Meier estimator. For all the calculations, a p value below 0.05 was adopted as the limit of statistical significance.

No differences in the estimated and observed rs699947 or rs1570360 allele transmission between the parents and their affected offspring were found.

No relations between rs699947 and rs1570360 VEGF polymorphisms and the incidence of chronic kidney disease of at least stage 3 were established.

Jha V., Wang A.Y., Wang H. The impact of CKD identification in large countries: the burden of illness. Nephrol. Dial. Transplant. 2012; 27(Suppl. 3): iii32–iii38, doi: 10.1093/ndt/gfs113.
Muhl L., Moessinger C., Adzemovic M.Z., Dijkstra M.H., Nilsson I., Zeitelhofer M., Hagberg C.E., Huusko J., Falkevall A., Ylä-Herttuala S., Eriksson U. Expression of vascular endothelial growth factor (VEGF)-B and its receptor (VEGFR1) in murine heart, lung and kidney. Cell Tissue Res. 2016; 365(1): 51–63, doi: 10.1007/s00441-016-2377-y.
Kim B.S., Goligorsky M.S. Role of VEGF in kidney development, microvascular maintenance and pathophysiology of renal disease. Korean J. Intern. Med. 2003; 18(2): 65–75.
Marti H.H. Vascular endothelial growth factor. Adv. Exp. Med. Biol. 2002; 513: 375–394.
Advani A. Vascular endothelial growth factor and the kidney: something of the marvellous. Curr. Opin. Nephrol. Hypertens. 2014; 23(1): 87–92, doi: 10.1097/01.mnh.0000437329.41546.a9.
Schrijvers B.F., Flyvbjerg A., De Vriese A.S. The role of vascular endothelial growth factor (VEGF) in renal pathophysiology. Kidney Int. 2004; 65(6): 2003–2017.
Zhang Y., Li S., Xiao H.Q., Hu Z.X., Xu Y.C., Huang Q. Vascular endothelial growth factor gene polymorphisms and renal cell carcinoma: A systematic review and meta-analysis. Oncol. Lett. 2013; 6(4): 1068–1078.
Rueda B., Perez-Armengol C., Lopez-Lopez S., Garcia-Porrua C., Martín J., Gonzalez-Gay M.A. Association between functional haplotypes of vascular endothelial growth factor and renal complications in Henoch-Schönlein purpura. J. Rheumatol. 2006; 33(1): 69–73.
Wongpiyabovorn J., Hirankarn N., Ruchusatsawat K., Yooyongsatit S., Benjachat T., Avihingsanon Y. The association of single nucleotide polymorphism within vascular endothelial growth factor gene with systemic lupus erythematosus and lupus nephritis. Int. J. Immunogenet. 2011; 38(1): 63–67, doi: 10.1111/j.1744-313X.2010.00960.x.
Rothuizen T.C., Ocak G., Verschuren J.J., Dekker F.W., Rabelink T.J., Jukema J.W., Rotmans J.I. Candidate Gene Analysis of Mortality in Dialysis Patients. PLoS One 2015; 10(11): e0143079, doi: 10.1371/journal.pone.0143079.
Lacchini R., Luizon M.R., Gasparini S., Ferreira-Sae M.C., Schreiber R., Nadruz W. Jr, Tanus-Santos J.E. Effect of genetic polymorphisms of vascular endothelial growth factor on left ventricular hypertrophy in patients with systemic hypertension. Am. J. Cardiol. 2014; 113(3): 491–496, doi: 10.1016/j.amjcard.2013.10.034.
Cui Q.T., Li Y., Duan C.H., Zhang W., Guo X.L. Further evidence for the contribution of the vascular endothelial growth factor gene in coronary artery disease susceptibility. Gene 2013; 521(2): 217–221, doi: 10.1016/j.gene.2013.03.091.
Liu D., Song J., Ji X., Liu Z., Cong M., Hu B. Association of Genetic Polymorphisms on VEGFA and VEGFR2 with risk of coronary heart disease. Medicine (Baltimore) 2016; 95(19): e3413, doi: 10.1097/MD.0000000000003413.
Cheng H., Harris R.C. Renal endothelial dysfunction in diabetic nephropathy. Cardiovasc. Hematol. Disord. Drug Targets 2014; 14(1): 22–33.
Tanaka S., Tanaka T., Nangaku M. Hypoxia and Dysregulated Angiogenesis in Kidney Disease. Kidney Dis. (Basel) 2015; 1(1): 80–89, doi: 10.1159/000381515.
Bányász I., Bokodi G., Vásárhelyi B., Treszl A., Derzbach L., Szabó A., Tulassay T., Vannay A. Genetic polymorphisms for vascular endothelial growth factor in perinatal complications. Eur. Cytokine Netw. 2006; 17(4): 266–270.
Machado F.G., Kuriki P.S., Fujihara C.K., Fanelli C., Arias S.C., Malheiros D.M., Camara N.O., Zatz R. Chronic VEGF blockade worsens glomerular injury in the remnant kidney model. PLoS One 2012; 7(6): e39580, doi: 10.1371/journal.pone.0039580.
Eremina V., Sood M., Haigh J., Nagy A., Lajoie G., Ferrara N., Gerber H.P., Kikkawa Y., Miner J.H., Quaggin S.E. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J. Clin. Invest. 2003; 111(5): 707–716.
Zeng F.C., Zeng M.Q., Huang L., Li Y.L., Gao B.M., Chen J.J., Xue R.Z., Tang Z.Y. Downregulation of VEGFA inhibits proliferation, promotes apoptosis, and suppresses migration and invasion of renal clear cell carcino-ma. Onco Targets Ther. 2016; 9: 2131–2141, doi: 10.2147/OTT.S98002.
Martins D.P., Souza M.A., Baitello M.E., Nogueira V., Oliveira C.I., Pinhel M.A., Caldas H.C., Filho M.A., Souza D.R. Vascular endothelial growth factor as an angiogenesis biomarker for the progression of autosomal dominant polycystic kidney disease. Genet. Mol. Res. 2016; 15(1), doi: 10.4238/gmr.15017623.
Chow K.M., Szeto C.C., Lai F.M., Poon P., Wong T.Y., Li P.K. Genetic polymorphism of vascular endothelial growth factor: impact on progression of IgA nephropathy. Ren. Fail. 2006; 28(1): 15–20.
Günesacar R., Opelz G., Erken E., Pelzl S., Döhler B., Ruhenstroth A., Süsal C. VEGF 936 C/T gene polymorphism in renal transplant recipients: association of the T allele with good graft outcome. Hum. Immunol. 2007; 68(7): 599–602.
Jiménez-Sousa M.A., Fernández-Rodríguez A., Heredia M., Tamayo E., Guzmán-Fulgencio M., Lajo C., López E., Gómez-Herreras J.I., Bustamante J., Bermejo-Martín J.F., Resino S. Genetic polymorphisms located in TGFB1, AGTR1, and VEGFA genes are associated to chronic renal allograft dysfunction. Cytokine 2012; 58(3): 321–326, doi: 10.1016/j.cyto.2012.02.017.
Mayer G. Capillary rarefaction, hypoxia, VEGF and angiogenesis in chronic renal disease. Nephrol. Dial. Transplant. 2011; 26(4): 1132–1137, doi: 10.1093/ndt/gfq832.
Nangaku M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J. Am. Soc. Nephrol. 2006; 17(1): 17–25.
Ballermann B.J., Obeidat M. Tipping the balance from angiogenesis to fibrosis in CKD. Kidney Int. Suppl. 2014; 4(1): 45–52.
Saluk J.L., Bansal V.K., Hoppensteadt D.A., Syed D.A., Abro S., Fareed J. Effect of erythropoietin stimulating agents on vascular endothelial growth factor levels in patients with end stage renal disease. Int. Angiol. 2017; 36(2): 197–201.
Yang J.W., Hutchinson I.V., Shah T., Fang J., Min D.I. Gene polymorphism of vascular endothelial growth factor -1154 G>A is associated with hypertensive nephropathy in a Hispanic population. Mol. Biol. Rep. 2011; 38(4): 2417–2425, doi: 10.1007/s11033-010-0376-8.
Małkiewicz A., Słomiński B., Skrzypkowska M., Siebert J., Gutknecht P., Myśliwska J. The GA genotype of the -1154 G/A (rs1570360) vascular endothelial growth factor (VEGF) is protective against hypertension-related chronic kidney disease incidence. Mol. Cell Biochem. 2016; 418(1–2): 159–165, doi: 10.1007/s11010-016-2741-y.
Chade A.R. VEGF: Potential therapy for renal regeneration. F1000 Med. Rep. 2012; 4: 1, doi: 10.3410/M4-1.
Journals System - logo
Scroll to top