Ocena stanu antyoksydacyjnego w wybranych chorobach układowych tkanki łącznej
Brygida Przywara-Chowaniec 1  
,   Sebastian Seget 2  
,   Maria Dróżdż 2  
,   Agata Puzio 1  
,   Zenon Czuba 2  
,   Ewa Nowalany-Kozielska 1  
,   Damian Kawecki 1  
,   Maciej Gawlikowski 3  
 
More details
Hide details
1
2nd Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
2
Department of Microbiology and Immunology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
3
Professor Zbigniew Religa Foundation of Cardiac Surgery Development
CORRESPONDING AUTHOR
Brygida Przywara-Chowaniec   

2nd Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, ul. M. Curie-Skłodowskiej 10, 41-800 Zabrze, Poland,
 
Ann. Acad. Med. Siles. 2018;72:116–120
 
KEYWORDS
TOPICS
ABSTRACT
Introduction:
Reactive oxygen species (ROS), which cause increased degradation of nitric oxide and defects in endothelial function, play an essential role in the pathogenesis of increased vascular contractility. Reactive oxygen species are produced in the vascular bed by endothelial cells, smooth muscle cells and fibroblasts. The destructive effect of ROS is of great importance to the pathogenesis of many diseases such as atheromatosis, ischemia, heart failure, cerebral insufficiency and respiratory failure.

Material and methods:
A total of 36 patients (31 females, 5 males; mean age 47 ± 7 years) with connective tissue diseases (systemic lupus erythematosus – 23 patients, systemic sclerosis – 13 patients) and 40 (37 females, 3 males) healthy volunteers (mean age 50 ± 2 years) of both sexes were enrolled in the study. This study evaluated the total antioxidant capacity in serum, using the method of reducing radical DPPH and radical ABTS•+.

Results:
The blood plasma of the patients had lower antioxidant activities compared to the blood plasma of the healthy controls.

Conclusions:
This study shows the differences in the antioxidant activity in healthy volunteers and patients with connective tissue diseases. These parameters can be monitored during treatment by modulating oxidative metabolism and by stimulating antioxidant activity.

 
REFERENCES (16)
1.
Matyska-Piekarska E., Łuszczewski A., Łącki J., Wawer I. Rola stresu oksydacyjnego w etiopatogenezie reumatoidalnego zapalenia stawów. Postepy Hig. Med. Dosw. 2006; 60: 617–623.
 
2.
Li Y., Browne R.W., Bonner M.R., Deng F., Tian L., Mu L. Positive re-lationship between total antioxidant status and chemokines observed in adults. Oxid. Med. Cell. Longev. 2014; 2014: 693680, doi: 10.1155/2014/693680.
 
3.
Majdan M. Toczeń rumieniowaty układowy. Reumatologia 2016; supl. 1: 26–35, doi: 10.5114/reum.2016.59996.
 
4.
Ahsan H., Ali A., Ali R. Oxygen free radicals and systemic autoimmunity. Clin. Exp. Immunol. 2003; 131(3): 398–404, doi: 10.1046/j.1365-2249.2003.02104.x.
 
5.
Clements P.J. Systemic sclerosis (scleroderma) and related disorders: clinical aspects. Baillieres Best Pract. Res. Clin. Rheumatol. 2000; 14(1): 1–16, doi: 10.1053/berh.1999.0074.
 
6.
Darley-Usmar V., Starke-Reed P.E. Antioxidants: strategies for interventions in aging and age-related diseases. A workshop sponsored by National Insitute on Aging and by the Office of Dietary Supplements. Antioxid. Redox Signal. 2000; 2(3); 375–377, doi: 10.1089/15230860050192143.
 
7.
Murray R.K. Muscle and cytoskeleton. W: Harper’s Biochemistry. Red. R.K. Murray, D.K. Granner, P.A. Mayes, V.W. Rodwell. McGraw-Hill. New York 2000, s. 729–731.
 
8.
Wang P., Zweier J.L. Measurement of nitric oxide and peroxynitrite gene-ration in the postischemic heart. Evidence for peroxynitrite-mediated reperfusion injury. J. Biol. Chem. 1996; 271(46): 29223–29230, doi: 10.1074/jbc.271.46.29223.
 
9.
Jackson M.J. An overview of methods for assessment of free radical activity in biology. Proc. Nutr. Soc. 1999; 58(4): 1001–1006.
 
10.
Janaszewska A., Bartosz G. Assay of total antioxidant capacity: comparison of four methods as applied to human blood plasma. Scand. J. Clin. Lab. Invest. 2002; 62(3): 231–236.
 
11.
Molyneux P. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol. 2004; 26(2): 211–219.
 
12.
Jang I.C., Jo E.K., Bae M.S., Lee H.J., Jeon G.I., Park E., Yuk H.G., Ahn G.H., Lee S.C. Antioxidant and antigenotoxic activities of different parts of persimmon (Diospyros kaki cv. Fuyu) fruit. J. Med. Plants Res. 2010; 4(2): 155–160.
 
13.
Shah D., Mahajan N., Sah S., Nath S.K., Paudyal B. Oxidative stress and its biomarkers in systemic lupus erythematosus. J. Biomed. Sci. 2014; 21: 23, doi: 10.1186/1423-0127-21-23.
 
14.
Ogawa F., Shimizu K., Muroi E., Hara T., Sato S. Increasing levels of serum antioxidant status, total antioxidant power, in systemic sclerosis. Clin. Rheumatol. 2011; 30(7): 921–925, doi: 10.1007/s10067-011-1695-4.
 
15.
Bartosz G. Druga twarz tlenu. Wydawnictwo Naukowe PWN. Warszawa 2003, s. 212–213.
 
16.
Sfrent-Cornateanu R., Mihai C., Stoian I., Lixandru D., Bara C., Moldoveanu E. Antioxidant defense capacity in scleroderma patients. Clin. Chem. Lab. Med. 2008; 46(6): 836–841, doi: 10.1515/CCLM.2008.132.
 
eISSN:1734-025X