Use of 3D printing in head and neck surgery
More details
Hide details
Department of Anatomy, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Poland
Institute of Non-Ferrous Metals, Gliwice
Solveere Sp. z o.o., Ogrodzieniec
Department of Laryngology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Poland
Wirginia Likus   

Zakład Anatomii, Katedry Nauk Podstawowych, Wydział Nauk o Zdrowiu w Katowicach, Śląski Uniwersytet Medyczny w Katowicach, ul. Medyków 18, 40-752 Katowice
Ann. Acad. Med. Siles. 2020;74:99–115
Currently, 3D printing in medicine does not comprise only prostheses or implants, but also medical modelling and surgical planning. The future of 3D printing is printing combined with tissue bioengineering (bioprinting). Scaffolds made in 3D technology containing living cells are a step to creating tissues and organs. Three-dimensional printing in surgery is now considered the future of reconstructive and regenerative medicine. Head and neck surgery also benefits from advances in 3D printing. In this article, we will describe some of the possibilities offered by 3D printing in the aspect of education, training, and printed prostheses for the needs of head and neck surgery.
Kaye R., Goldstein T., Zeltsman D., Grande D.A., Smith L.P. Three dimensional printing: A review on the utility within medicine and otolaryngology. Int. J. Pediatr. Otorhinolaryngol. 2016; 89: 145–148, 10.1016/j.ijporl.2016.08.007.
Zadpoor A.A., Malda J. Additive Manufacturing of Biomaterials, Tissues, and Organs. Ann. Biomed. Eng. 2017; 45(1): 1–11. 10.1007/s10439-016-1719-y.
Martelli N., Serrano C., van den Brink H., Pineau J., Prognon P., Borget I., El Batti S. Advantages and disadvantages of 3-dimensional printing in surgery: A systematic review. Surgery 2016; 159(6): 1485–1500, doi: 10.1016/j.surg.2015.12.017.
Kim G.B., Lee S., Kim H., Yang D.H., Kim Y.H., Kyung Y.S., Kim C.S., Choi S.H., Kim B.J., Ha H., Kwon S.U., Kim N. Three-Dimensional Printing: Basic Principles and Applications in Medicine and Radiology. Korean J. Radiol. 2016; 17(2): 182–197, doi: 10.3348/kjr.2016.17.2.182.
Cui X., Boland T., D'Lima D.D., Lotz M.K. Thermal inkjet printing in tissue engineering and regenerative medicine. Recent. Pat. Drug. Deliv. Formul. 2012; 6(2): 149–155, doi: 10.2174/187221112800672949.
Jang D., Kim D., Moon J. Influence of fluid physical properties on ink-jet printability. Langmuir. 2009; 25(5): 2629–2635, doi: 10.1021/la900059m.
Khan M.S., Fon D., Li X., Tian J., Forsythe J., Garnier G., Shen W. Biosurface engineering through ink jet printing. Colloids Surf. B. Biointerfaces 2010; 75(2): 441–447, doi: 10.1016/j.colsurfb.2009.09.032.
Christensen K., Xu C., Chai W., Zhang Z., Fu J., Huang Y. Freeform inkjet printing of cellular structures with bifurcations. Biotechnol Bioeng. 2015; 112(5): 1047–1055, doi: 10.1002/bit.25501.
Gopinathan J., Noh I. Recent trends in bioinks for 3D printing. Biomater Res. 2018; 22: 11, doi: 10.1186/s40824-018-0122-1.
Hölzl K., Lin S., Tytgat L., Van Vlierberghe S., Gu L., Ovsianikov A. Bioink properties before, during and after 3D bioprinting. Biofabrication. 2016; 8(3): 032002, doi: 10.1088/1758-5090/8/3/032002.
Gu B.K., Choi D.J., Park SJ., Kim M.S., Kang C.M., Kim C.H. 3-dimensional bioprinting for tissue engineering applications. Biomater Res. 2016; 20: 12, doi: 10.1186/s40824-016-0058-2.
Murphy S.V., Atala A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014; 32(8): 773–785, doi: 10.1038/nbt.2958.
Datta P., Ozbolat V., Ayan B., Dhawan A., Ozbolat I.T. Bone tissue bioprinting for craniofacial reconstruction. Biotechnol. Bioeng. 2017; 114(11): 2424–2431, doi: 10.1002/bit.26349.
Datta P., Ayan B., Ozbolat I.T. Bioprinting for vascular and vascularized tissue biofabrication. Acta Biomater. 2017; 51: 1–20, doi: 10.1016/j.actbio.2017.01.035.
Heller M., Bauer H.K., Goetze E., Gielisch M., Ozbolat I.T., Moncal K.K., Rizk E., Seitz H., Gelinsky M., Schröder H.C., Wang X.H., Müller W.E., Al-Nawas B. Materials and scaffolds in medical 3D printing and bioprinting in the context of bone regeneration. Int. J. Comput. Dent. 2016; 19(4): 301–321.
Hong N., Yang G.H., Lee J., Kim G.J. 3D bioprinting and its in vivo applications. Biomed. Mater. Res. B. Appl. Biomater. 2018; 106(1): 444–459, doi: 10.1002/jbm.b.33826.
Ozbolat I.T. Bioprinting scale-up tissue and organ constructs for transplantation. Trends Biotechnol. 2015; 33(7): 395–400, doi: 10.1016/j.tibtech.2015.04.005.
Trachtenberg J.E., Placone J.K., Smith B.T., Piard C.M., Santoro M., Scott D.W., Fisher J.P., Mikos A.M. Effects of Shear Stress Gradients on Ewing Sarcoma Cells Using 3D Printed Scaffolds and Flow Perfusion ACS Biomater. Sci. Eng. 2016; 2(10): pp 1771–1780.
Kurenov S.N., Ionita C., Sammons D., Demmy T.L. Three-dimensional printing to facilitate anatomic study, device development, simulation, and planning in thoracic surgery. J. Thorac. Cardiovasc. Surg. 2015; 149(4): 973–979, doi: 10.1016/j.jtcvs.2014.12.059.
Zheng B., Wang X., Zheng Y., Feng J. 3D-printed model improves clinical assessment of surgeons on anatomy. J. Robot. Surg. 2018: 13(1): 61–67, doi: 10.1007/s11701-018-0809-2.
Werz S.M., Zeichner S.J., Berg B.I., Zeilhofer H.F., Thieringer F. 3D Printed Surgical Simulation Models as educational tool by maxillofacial surgeons. Eur. J. Dent. Educ. 2018: 22(3): e500–e505, doi: 10.1111/eje.12332.
Da Cruz M.J., Francis H.W. Face and content validation of a novel three-dimensional printed temporal bone for surgical skills development. J. Laryngol. Otol. 2015; 129(Suppl 3): S23–29, doi: 10.1017/S0022215115001346.
Barber S.R., Kozin E.D., Dedmon M., Lin B.M., Lee K., Sinha S., Black N., Remenschneider A.K., Lee D.J. 3D-printed pediatric endoscopic ear surgery simulator for surgical training. Int. J. Pediatr. Otorhinolaryngol. 2016; 90: 113–118, doi: 10.1016/j.ijporl.2016.08.027.
Sander I.M., Liepert T.T., Doney E.L., Leevy W.M., Liepert D.R. Patient education for endoscopic sinus surgery: preliminary experience using 3D-printed clinical imaging data. J. Funct. Biomater. 2017; 8(2): E13, doi: 10.3390/jfb8020013.
Maciejewski A., Krakowczyk Ł., Szymczyk C., Wierzgoń J., Grajek M., Dobrut M., Szumniak R., Ulczok R., Giebel S., Bajor G., Półtorak S. The First Immediate Face Transplant in the World. Ann Surg. 2016; 263(3): e36–39, doi: 10.1097/SLA.0000000000001597.
Monfared A., Mitteramskogler G., Gruber S., Salisbury J.K. Jr, Stampfl J., Blevins N.H. High-fidelity, inexpensive surgical middle ear simulator. Otol. Neurotol. 2012; 33(9): 1573–1577, doi: 10.1097/MAO.0b013e31826dbca5.
Morris D., Sewell C., Barbagli F., Salisbury K., Blevins N.H., Girod S. Visuo-haptic simulation of bone surgery for training and evaluation. IEEE Comput. Graph. Appl. 2006; 26(6): 48–57, doi: 10.1109/mcg.2006.140.
Hochman J.B., Rhodes C., Wong D., Kraut J., Pisa J., Unger B. Comparison of cadaveric and isomorphic three-dimensional printed models in temporal bone education. Laryngoscope 2015; 125(10): 2353–2357, doi: 10.1002/lary.24919.
Rose A.S., Kimbell J.S., Webster C.E., Harrysson O.L., Formeister E.J., Buchman C.A. Multi-material 3D Models for Temporal Bone Surgical Simulation. Ann. Otol. Rhinol. Laryngol. 2015; 124(7): 528–536, doi: 10.1177/0003489415570937.
Mick P.T., Arnoldner C., Mainprize J.G., Symons S.P., Chen J.M. Face validity study of an artificial temporal bone for simulation surgery. Otol. Neurotol. 2013; 34(7): 1305–1310, doi: 10.1097/MAO.0b013e3182937af6.
Nagendran M., Toon C.D., Davidson B.R., and Gurusamy K.S. Laparoscopic surgical box model training for surgical trainees with no prior laparoscopic experience. Cochrane Database Syst. Rev. 2014; 17(1): CD010479, doi: 10.1002/14651858.CD010479.pub2.
Singer M.I., Blom E.D. An endoscopic technique for restoration of voice after laryngec-tomy. Ann. Otol. Rhinol. Laryngol. 1980; 89(6 Pt 1): 529–533, doi: 10.1177/000348948008900608.
Singer M.I., Blom E.D., Hamaker R.C. Further experience with voice restoration after total laryngectomy. Ann. Otol. Rhinol. Laryngol. 1981; 90: 498–502.
Deschler D.G., Bunting G.W., Lin D.T., Emerick K., Rocco J. Evaluation of voice prosthesis placement at the time of primary tracheoesophageal puncture with total laryngectomy. Laryngoscope 2009; 119(7): 1353–1357, doi: 10.1002/lary.20490.
Divi V., Lin D.T., Emerick K., Rocco J. , Deschler D.G. Primary TEP placement in patients with laryngopharyngeal free tissue reconstruction and salivary bypass tube placement. Otolaryngol. Head Neck Surg. 2011; 144(3): 474–476, doi: 10.1177/0194599810391960.
Sethi R.K., Kozin E.D., Lam A.C., Emerick K.S., Deschler D.G. Primary tracheoesophageal puncture with supraclavicular artery island flap after total laryngectomy or laryngopharyngectomy. Otolaryngol. Head Neck Surg. 2014; 151(3): 421–423, doi: 10.1177/0194599814539443.
Deschler D.G., Emerick K.S., Lin D.T., Bunting G.W. Simplified technique of tracheoesophageal prosthesis placement at the time of secondary tracheoesophageal puncture (TEP). Laryngoscope 2011; 121(9):1855–1859, doi: 10.1002/lary.21910.
Akhtar K., Sugand K., Sperrin M., Cobb J., Standfield N., Gupte C. Training safer orthopedic surgeons. Construct Validation of a Virtual-Reality Simulator for Hip Fracture Surgery. Acta Orthop. 2015: 86(5): 616–621, doi: 10.3109/17453674.2015.1041083.
Reznick R.K., MacRae H. Teaching surgical skills–changes in the wind. N. Engl. J. Med. 2006; 355: 2664–2669, doi: 10.1056/NEJMra054785.
Barnes R.W. Surgical handicraft: teaching and learning surgical skills. Am. J. Surg. 1987; 153(5): 422–427, doi: 10.1016/0002-9610(87)90783-5.
Rose A.S., Webster C.E., Harrysson O.L.A., Formeister E.J., Rawal R.B., Iseli C.E. Pre-operative simulation of pediatric mastoid surgery with 3D-printed temporal bone models. Int. J. Pediatr. Otorhinolaryngol. 2015; 79(5): 740–744, doi: 10.1016/j.ijporl.2015.03.004.
Chang D.R., Lin R.P., Bowe S., Bunegin L., Weitzel E.K., McMains K.C., Willson T., Chen P.G. Fabrication and validation of a low-cost, medium-fidelity silicone injection molded endoscopic sinus surgery simulation model. Laryngoscope 2017; 127(4): 781–786, doi: 10.1002/lary.26370.
Dedmon M.M., Paddle P.M., Phillips J., Kobayashi L., Franco R.A., Song P.C. Development and validation of a high-fidelity porcine laryngeal surgical simulator. Otolaryngol. Head Neck Surg. 2015; 153(3): 420–426, doi: 10.1177/0194599815590118.
Dedmon M.M., Kozin E.D., Lee D.J. Development of a temporal bone model for transcanal endoscopic ear surgery. Otolaryngol. Head Neck Surg. 2015; 153(4): 613–615, doi: 10.1177/0194599815593738.
Barber S.R., Kozin E.D., Naunheim M.R., Sethi R., Remenschneider A.K., Deschler D.G. 3D-printed tracheoesophageal puncture and prosthesis placement simulator. 39(1): 37–40, doi: 10.1016/j.amjoto.2017.08.001.
Tai B.L., Wang A.C., Joseph J.R., Wang P.I., Sullivan S.E., McKean E.L., Shih A.J., Rooney D.M. A physical simulator for endoscopic endonasal drilling techniques: technical note. J. Neurosurg. 2016; 124(3): 811–816, doi: 10.3171/2015.3.JNS1552.
Hsieh T.Y., Cervenka B., Dedhia R., Strong E.B., Steele T. Assessment of a Patient-Specific, 3-Dimensionally Printed Endoscopic Sinus and Skull Base Surgical Model. JAMA Otolaryngol. Head Neck Surg. 2018; 144(7): 574–579, doi: 10.1001/jamaoto.2018.0473.
Alrasheed A.S., Nguyen L.H.P., Mongeau L., Funnell W.R.J., Tewfik M.A. Development and validation of a 3D-printed model of the ostiomeatal complex and frontal sinus for endoscopic sinus surgery training. Int. Forum Allergy Rhinol. 2017; 7(8): 837–841.
Sander I.M., McGoldrick M.T., Helms M.N., Betts A., van Avermaete A., Owers E., Doney E., Liepert T., Niebur G., Liepert D., Leevy W.M. Three-dimensional printing of X-ray computed tomography datasets with multiple materials using open-source data processing. Anat. Sci. Educ. 2017; 10(4): 383–391, doi: 10.1002/ase.1682.
Unkovskiy A., Spintzyk S., Brom J., Huettig F., Keutel C. Direct 3D printing of silicone facial prostheses: A preliminary experience in digital workflow. J. Prosthet. Dent. 2018; 120(2): 303–308, doi: 10.1016/j.prosdent.2017.11.007.
Chen H.Y., Ng L.S., Chang C.S., Lu T.C., Chen N.H., Chen Z.C. Pursuing Mirror Image Reconstruction in Unilateral Microtia: Customizing Auricular Framework by Application of Three-Dimensional Imaging and Three-Dimensional Printing. Plast. Reconstr. Surg. 2017; 139(6): 1433–1443, doi: 10.1097/PRS.0000000000003374.
Zopf D.A., Mitsak A.G., Flanagan C.L., Wheeler M., Green G.E., Hollister S.J. Computer aided-designed, 3-dimensionally printed porous tissue bioscaffolds for craniofacial soft tissue reconstruction. Otolaryngol. Head Neck Surg. 2015; 152(1): 57–62, doi: 10.1177/0194599814552065.
Markstedt K., Mantas A., Tournier I., Martínez Ávila H., Hägg D., Gatenholm P. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications. Biomacromolecules 2015; 16(5): 1489–1496, doi: 10.1021/acs.biomac.5b00188.
Danti S., D’Alessandro D., Pietrabissa A., Petrini M., Berrettini S. Development of tissue-engineered substitutes of the ear ossicles: PORP-shaped poly(propylene fumarate)-based scaffolds cultured with human mesenchymal stromal cells. J. Biomed. Mater Res. A. 2009; 92(4): 1343–1356, doi: 10.1002/jbm.a.32447. doi: 10.1002/jbm.a.32447.
Xiong Y., Chen P., Sun J. Studies on personalized porous titanium implant fabricated using three-dimensional printing forming technique. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2012; 29(2): 247–250.
Li X.S., Sun J.J., Jiang W., Liu X. Effect on cochlea function by tissue-engineering osside prosthets containing controlled release bone morphogenetic protein 2 transplanted into acoustic build in guinea pig. Chin. J. Otorhinolaryngol. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2009; 44(6): 490–493.
Phillippi J.A., Miller E., Weiss L., Huard J., Waggoner A., Campbell P. Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells. 2008; 26(1): 127–134, doi: 10.1634/stemcells.2007-0520.
Kozin E.D., Black N.L., Cheng J.T., Cotler M.J., McKenna M.J., Lee D.J., Lewis J.A., Rosowski J.J., Remenschneider A.K. Design, fabrication, and in vitro testing of novel three-dimensionally printed tympanic membrane grafts. Hear Res. 2016; 340: 191–203, doi: 10.1016/j.heares.2016.03.005.
Kuo C.Y., Wilson E., Fuson A., Gandhi N., Monfaredi R., Jenkins A., Romero M., Santoro M., Fisher J.P., Cleary K., Reilly B. Repair of Tympanic Membrane Perforations with Customized Bioprinted Ear Grafts Using Chinchilla Models. Tissue Eng Part A. 2018; 24(5–6): 527–535, doi: 10.1089/ten.TEA.2017.0246.
Lorenz R.R., Strome M. Total laryngeal transplant explanted: 14 years of lessons learned. Otolaryngol. Head Neck Surg. 2014; 150(4): 509–511, doi: 10.1177/0194599813519748.
Debry C., Dupret-Bories A., Vrana N.E., Hemar P., Lavalle P., Schultz P. Laryngeal replacement with an artificial larynx after total laryngectomy: the possibility of restoring larynx functionality in the future. Head Neck. 2014; 36(11): 1669–1673, doi: 10.1002/hed.23621.
Hamdan A.L., Haddad G., Haydar A., Hamade R. The 3D Printing of the Paralyzed Vocal Fold: Added Value in Injection Laryngoplasty. J. Voice. 2018; 32(4): 499–501, doi: 10.1016/j.jvoice.2017.07.011.
Storck C., Gugatschka M., Friedrich G., Sorantin E., Ebner F., Fischer C., Wolfensberger M., Juergens P. Developing a 3D model of the laryngeal cartilages using HRCT data and MIMICS’s segmentation software. Logopedics Phoniatrics Vocology. 2010; 35(1): 19–23, doi: 10.3109/14015430903552378.
Storck C., Gehrer R., Fischer C., Wolfensberger M., Honegger F., Friedrich G., Gugatschka M. The role of the cricothyroid joint anatomy in cricothyroid approximation surgery. J. Voice. 2011; 25(5): 632–637, doi: 10.1016/j.jvoice.2010.06.001.
Zhang Y., Shi T. The research of laryngeal joints to reconstruction and modeling. Biomed. Mater. Eng. 2014; 24(6): 2627–2634, doi: 10.3233/BME-141079.
Reszke M., Środulska M., Paluch J., Jasik K., Okła H., Gabor J., Łężniak M., Swinarew B., Swinarew A. Próba rekonstrukcji krtani przy użyciu technik prototypowania 3D z wykorzystaniem poliwęglanu Makrolon 2600. Przetwórstwo tworzyw 2015; 6: 487–492.
Jurek-Matusiak O., Wójtowicz P., Szafarowski T., Krzeski A. Vertical partial frontolateral laryngectomy with simultaneous pedunculated sternothyroid muscle flap reconstruction of the vocal fold - surgical procedure and treatment outcomes. Otolaryngol. Pol. 2018; 72(1): 23–29, doi: 10.5604/01.3001.0011.5938.
Chang J.W., Park S.A., Park J.K., Choi J.W., Kim Y.S., Shin Y.S., Kim C.H. Tissue-engineered tracheal reconstruction using three-dimensionally printed artificial tracheal graft: preliminary report. Artif. Organs. 2014; 38(6): E95–E105, doi: 10.1111/aor.12310.
Huang L., Wang L., He J., Zhao J., Zhong D., Yang G., Guo T., Yan X., Zhang L., Li D., Cao T., Li X. Tracheal suspension by Using 3-dimentional printed personalized scaffold in patient with tracheomalacia. J. Thorac. Dis. 2016; 8(11): 3323–3328, doi: 10.21037/jtd.2016.10.53.
Bhora F.Y., Lewis E.E., Rehmani S.S., Ayub A., Raad W., Al-Ayoubi A.M., Lebovics R.S. Circumferential Three dimentional – Printed Tracheal grafts: Research Model feasibility and early results. Ann. Thorac. Surg. 2017; 104(3): 958–963, doi: 10.1016/j.athoracsur.2017.03.064.