5-Hydroxytryptamine level in the brain of rats after simultaneous lesion of the central dopaminergic and noradrenergic system
More details
Hide details
Katedra i Zakład Farmakologii w Zabrzu SUM w Katowicach
Przemysław Nowak   

Katedra i Zakład Farmakologii SUM, 41-808 Zabrze, ul. H. Jordana 38; tel./fax 32 272 26 83
Ann. Acad. Med. Siles. 2009;63:39–45
Rats lesioned shortly after birth with 6-OHDA (neurotoxin for the central dopaminergic system) have been proposed to be a near-ideal model of severe Parkinson’s disease, because of non-lethality of the procedure, near-total destruction of nigrostriatal dopaminergic fi bres and near-total dopamine (DA) denervation of striatum. In such rodent model of Parkinson’s disease increase of serotoninergic system in the brain of adult rats was observed. The aim of presented study was to examine the central serotoninergic system in adult rats simultaneously lesioned with central dopaminergic (using 6-OHDA) and noradrenergic system (using DSP-4).

Material and Methods:
Newborn male Wistar rats were injected on the day 1st and 3rd of life with DSP-4 (neurotoxin for noradrenergic system) 50.0 mg/kg SC, and on the day 3rd with 6-OHDA 134 μg ICV. Separately and concomitantly. In adult animals the level of biogenic amines in the brain was estimated by HPLC/ED technique.

It was shown that in rats lesioned as neonates with 6-OHDA increase of 5-HT and its metabolite 5-HIAA was observed in the brain of adult rats. Simultaneous lesion of the central dopaminergic and noradrenergic system induce further increase in the level of indole amines in the brain of adult rats.

Simultaneous lesion of the central dopaminergic and noradrenergic system of rats as neonates increased activity of the central serotoninergic system which seems to be a substitute of the dopaminergic one.

Kostrzewa R.M. Mechanism of action of 6-hydroxydopamine, a dopaminergic neurotoxin. W: Mechanisms of degeneration and protection of the dopaminergic system. Segura-Aguilar J. (red.). Graham Publishing Co. Johnson City TN. 2001; 89-104.
Kostrzewa R.M., Reader T.A., Descarries L. Serotonin neural adaptations to ontogenetic loss of dopamine neurons in rat brain. J. Neurochem. 1998; 70: 889-898.
Kostrzewa R.M., Kostrzewa J.P., Brus R., Kostrzewa R.A., Nowak P. Proposed animal model of severe Parkinson’s disease: neonatal 6-hydroxydopamine lesion of dopaminergic innervation of striatum. J. Neural. Transm. 2006; 70 (Suppl.): 277-279.
Berger T.W., Kaul S., Stricker E.M., Zigmond M.J. Hyperinnervation of the striatum by dorsal raphe aff erents after dopamine- depleting brain lesions in neonatal rats. Brain Res. 1985; 336: 354-358.
Snyder A.M., Zigmond M.J., Lund R.D. Sprouting of serotoninergic aff erents into striatum after dopamine-depleting lesions in infant rats: a retrograde transport and immunocytochemical study. J. Comp. Neurol. 1986; 245: 274-281.
Kostrzewa R.M., Gong L., Brus R. Serotonin (5-HT) system mediate dopamine (DA) receptor supersensitivity. Acta Neurobiol. Exp. 1992; 53: 31-41.
Brus R., Kostrzewa R.M., Perry K.W., Fuller R.W. Supersensitization of the oral response to SKF 38393 in neonatal 6-hydroxydopamine- lesioned rats is eliminated by neonatal 5,7-dihydroxytryptamine treatment. J. Pharmacol. Exper. Ther. 1994; 260: 231-237.
Jaim-Etcheverry G., Zeicher I.M. DSP-4 a novel compound with neurotoxic eff ects on noradrenergic neurons of adults and developing rats. Brain Res. 1980; 188: 513- 523.
Jaim-Etcheverry G., Zeicher I.M. 2-Chlorethylamines: Neurochemical tools for the study of the noradrenergic neurons. TIPS 1984; 4: 473-475.
Nowak P., Bortel A., Labus Ł., Drosik M., Jośko J., Gorzałek J., Kwieciński A., Kostrzewa R.M., Brus R. Neonatal lesion of the central noradrenergic neurons by DSP-4; a model for the study of interaction with other neurotransmitter system in the brain of adult rats. Neurotox. Res. 2008 (w druku).
Nowak P., Labus Ł., Kostrzewa R.M., Brus R. DSP-4 prevents dopamine receptor priming by quinpirole. Pharmacol. Biochem. Behav. 2006; 84: 3-7.
Magnusson O., Nilsson L.B., Westerlund D. Simultaneous determination of dopamine, DOPAC and homovanillic acid. Direct injection of supernatants from brain tissue homogenates in a liquid chromatography – electrochemical detection system. J. Chromatogr. 1980; 221: 237-247.
Kostrzewa R.M., Brus R., Perry K.W. Interactive modulation by dopamine and serotonin neurons of receptor sensitivity of alternate neurochemical system. Pol. J. Pharmacol. 1999; 51: 39-47.
Kostrzewa R.M., Huang N.Y., Kostrzewa J.P., Nowak P., Brus R. Model tardive dyskinesia: Predictive 5-HT2C receptor agonist treatment. Neurotox. Res. 2007; 11: 41-50.
Iyer R.N., Bradberry C.W. Serotonin-mediated increase in prefrontal cortex dopamine release: pharmacological characterization. J. Pharmacol. Exp. Ther. 1996; 277: 40-47.
Bolcioglu A., Zhang K., Tarazi F.I. Dopamine depletion abolish apomorphineand amphetamine-induced increases in extracellular serotonin levels in the striatum of conscious rats: a microdialysis study. Neurosci. 2003; 119: 1045-1053.
Stachowiak M.K., Bruno J.P., Snyder A.M., MacKenzie R.G., Zigmond M.J. Sprouting of striatal serotonin neurons following neonatal 6-hydroxydopamine. Soc. Neurosci. 1982; 8: 304.
Stachowiak M.K., Bruno J.P., Snyder A.M., Stricker E.M., Zigmond M.J. Apparent sprouting of striatal serotoninergic terminals after dopamine-depleting brain lesions in neonatal rats. Brain Res. 1984; 291: 164-167.
Mailmman R.B., Towle A., Schulz D.W., Lewis M.H., Breese G.R., DeHaven D.L., Krigman M.R. Neonatal 6-OHDA treatment of rats: changes in dopamine (DA) receptors, striatal neurochemistry and anatomy. Soc. Neurosci. 1983; 9: 932-935.
Towle A.G., Crimell H.E., Maynard E.D., Lander J.M., Joh T.H., Mueller R.A., Breese G.R. Serotoninergic innervation of the rat candate following a neonatal 6-hydroxydopamine lesion: an anatomical, biochemical and pharmacological study. Pharmacol. Biochem. Behav. 1989; 34: 367-374.
Kostrzewa R.M., Brus R., Perry K.W., Fuller R.W. Age-dependence after 6-hydroxydopamine lesion on SKF-38393- and m-chlorphenylpiperazine-induced oral activity response of rats. Devel. Brain Res. 1993; 76: 87-93.
Carlson B.B., Wisniecki A., Salamone J.D. Local injection of the 5-hydroxytryptamine antagonist mianserin into substantia nigra part reticulate block tremulous jaw movements in rats: studies on putative model of Parkinsonian. Psychopharmacol. (Berlin) 2003; 165: 229-237.
Tannaka H., Kannari K., Maeda T., Tomiyama M., Suda T., Marsunaga M. Role of serotoninergic neurons in L-DOPA-derived extracellular dopamine in the striatum of 6-OHDA-lesioned rats. Neuroreport 1999; 10: 131-134.
Arai R., Karosawa N., Gettard M., Nagatsu I. L-DOPA is converted to dopamine in serotoninergic fi bres of the striatum of the rat: a double-labeling immunofl uorescence study. Neurosci. Lett. 1995; 195: 195-198.
Togi H., Abe T., Takahashi S., Takahoshi J., Homota H., Alterations in the concentration of serotoninergic and dopaminergic substances in the cerebrospinal fl uid of patients with Parkinson’s disease, and their changes after L-dopa. Neurosci. Lett. 1993; 159: 135-138.
Mayeux R. The “serotonin hypothesis” for depression in Parkinson’s disease. Adv. Neural. 1990; 53: 163-166.
Johnston T.H., Brotchie J.M. Drugs in development for Parkinson’s disease. Curr. Opin. Invest. Drugs 2004; 5: 720-726.
Nicholson S.L., Brotchie J.M. 5-hydroxytryptamine (5-HT, serotonin) and Parkinson’s disease-opportunities for novel therapeutics to reduce the problems of Levodopa therapy. Eur. J. Neurol. 2002; 9 (Suppl. 3): 1-6.
Srinivason J., Schmidt W.J. Behavioral and neurochemical eff ects of noradrenergic depletion with N-(2-chorethyl)-N-ethyl-2- bromobenzylamine in 6-hydroxydopamine- induced rat model of Parkinson disease. Behav. Brain Res. 2004; 151: 191-199.
Srinivasan J., Schmidt W.J. Treatment with alfa 2-adrenoreceptor agonist, 2-methoxyidazoxan, protect 6-hydrocydopamine- induced Parkinsonian symptoms in rats: neurochemical and behavioral evidence. Behav. Brain Res. 2004; 154: 353-356.
Srinivasan J., Schmidt W.J. Functional recovery of locus coreuleus noradrenergic neurons after DSP-4 lesion: eff ects on dopamine levels and neuroleptics inducedparkinsonian symptoms in rats. J. Neural. Transm. 2004; 111: 13-26.
Jokinen P., Brück A., Aalto S., Forsback S., Parkkola R., Rinne J.O. Impaired cognitive performance in Parkinson’s disease is related to caudate dopaminergic hypofunction and hippocampal atrophy. Parkinsonism Relat. Disord. 2009; 15: 88-93.
Kalaitzakis M.E., Christian L.M., Moran L.B., Graeber M.B., Pearce R.K., Gentleman S.M. Dementia and visual hallucinations associated with limbic pathology in Parkinson’s disease. Parkinsonism Relat. Disord. 2009; 15: 196-204.