Centrally acting cholecystokinin induces depressor circulatory effects in haemorrhage-shocked rats
More details
Hide details
Katedra i Zakład Fizjologii, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach
Wydział Lekarski, Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu
Jerzy Jochem   

Katedra i Zakład Fizjologii, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach, ul. Jordana 19, 41-808 Zabrze
Ann. Acad. Med. Siles. 2021;75:18–23
Cholecystokinin (CCK) is a peptide gastrointestinal hormone involved in the stimulation of lipid and protein digestion as well as a neurotransmitter/neuromodulator in the central nervous system. After intravenous administration, it induces a resuscitating effect in rats subjected to haemorrhagic shock. Since CCK is able to directly and indirectly affect the cardiovascular centre function, the aim of the study was to examine the action of the sulphated octapeptide form of CCK (CCK-8) given intracerebroventricularly (icv) in the sympathoinhibitory phase of haemorrhagic shock.

Material and methods:
Studies were carried out in male Wistar rats anaesthetized with ketamine/xylazine (100 mg/kg + 10 mg/kg, intramuscularly) and subjected to irreversible haemorrhagic shock (0% survival at 2 h) with a mean arterial pressure (MAP) of 20–25 mmHg. At 5th min of critical hypotension, the rats were injected icv with CCK-8 (5, 15 nmol) or saline (5 μl).

Haemorrhage led to a decrease in pulse pressure (PP), heart rate (HR) as well as increases in renal (RVR) and mesenteric vascular resistance (MVR). In the control group injected with saline, there were no significant increases in the measured cardiovascular parameters, and the survival time was 32.5 ± 5.1 min. CCK-8 induced dose-dependent decreases in MAP, PP and HR accompanied by increases in RVR and MVR, and also shortened the survival time in comparison to the control animals.

Centrally acting CCK-8 induces depressive circulatory effects in haemorrhage-shocked rats.

This research was supported by the Medical University of Silesia, Katowice grant (KNW-1-035/N/7/O).
Jacobsen J., Secher N.H. Heart rate during haemorrhagic shock. Clin. Physiol. 1992; 12(6): 659–666, doi: 10.1111/j.1475-097x.1992.tb00369.x.
Schadt J.C., Ludbrook J. Hemodynamic and neurohumoral responses to acute hypovolemia in conscious mammals. Am. J. Physiol. 1991; 260(2 Pt 2): H305–H318, doi: 10.1152/ajpheart.1991.260.2.H305.
Bertolini A. The opioid/anti-opioid balance in shock: a new target for therapy in resuscitation. Resuscitation 1995; 30(1): 29–42, doi: 10.1016/0300-9572(94)00863-b.
Bertolini A., Ferrari W., Guarini S. The adrenocorticotropic hormone (ACTH)-induced reversal of hemorrhagic shock. Resuscitation 1989; 18(2–3): 253–267, doi: 10.1016/0300-9572(89)90027-0.
Jochem J. Cardiovascular effects of histamine administered intracerebroventricularly in critical haemorrhagic hypotension in rats. J. Physiol. Pharmacol. 2000; 51(2): 229–239.
Jochem J., Kasperska-Zając A. The role of the histaminergic system in the central cardiovascular regulation in haemorrhagic hypotension. Folia Med. Cracov. 2012; 52(3–4): 31–41.
Hökfelt T., Cortés R., Schalling M., Ceccatelli S., Pelto-Huikko M., Persson H., Villar M.J. Distribution patterns of CCK and CCK mRNA in some neuronal and non-neuronal tissues. Neuropeptides 1991; 19 Suppl: 31–43, doi: 10.1016/0143-4179(91)90081-s.
Fink H., Rex A., Voits M., Voigt J.P. Major biological actions of CCK – a critical evaluation of research findings. Exp. Brain Res. 1998; 123(1–2): 77–83, doi: 10.1007/s002210050546.
Zanchi D., Depoorter A., Egloff L., Haller S., Mählmann L., Lang U.E. et al. The impact of gut hormones on the neural circuit of appetite and satiety: A systematic review. Neurosci. Biobehav. Rev. 2017; 80: 457–475, doi: 10.1016/j.neubiorev.2017.06.013.
Harro J. CCK and NPY as anti-anxiety treatment targets: promises, pitfalls, and strategies. Amino Acids 2006; 31(3): 215–230, doi: 10.1007/s00726-006-0334-x.
Shen C.J., Zheng D., Li K.X., Yang J.M., Pan H.Q., Yu X.D. et al. Cannabinoid CB1 receptors in the amygdalar cholecystokinin glutamatergic afferents to nucleus accumbens modulate depressive-like behavior. Nat. Med. 2019; 25(2): 337–349, doi: 10.1038/s41591-018-0299-9.
Whissell P.D., Bang J.Y., Khan I., Xie Y.F., Parfitt G.M., Grenon M. Selective activation of cholecystokinin-expressing GABA (CCK-GABA) neurons enhances memory and cognition. eNeuro 2019; 6(1): ENEURO0360-18.2019, doi: 10.1523/ENEURO.0360-18.2019.
Roman C.W., Derkach V.A., Palmiter R.D. Genetically and functionally defined NTS to PBN brain circuits mediating anorexia. Nat. Commun. 2016; 7: 11905, doi: 10.1038/ncomms11905.
Sartor D.M., Verberne A.J. Cholecystokinin selectively affects presympathetic vasomotor neurons and sympathetic vasomotor outflow. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002; 282(4): R1174–1184, doi: 10.1152/ajpregu.00500.2001.
Sugeta S., Hirai Y., Maezawa H., Inoue N., Yamazaki Y., Funahashi M. Presynaptically mediated effects of cholecystokinin-8 on the excitability of area postrema neurons in rat brain slices. Brain Res. 2015; 1618: 83–90, doi: 10.1016/j.brainres.2015.05.018.
Verberne A.J., Sartor D.M. CCK-induced inhibition of presympathetic vasomotor neurons: dependence on subdiaphragmatic vagal afferents and central NMDA receptors in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004; 287(4): R809–816, doi: 10.1152/ajpregu.00258.2004.
Kaczyńska K., Szereda-Przestaszewska M. Contribution of CCK1 receptors to cardiovascular and respiratory effects of cholecystokinin in anesthetized rats. Neuropeptides 2015; 54: 29–34, doi: 10.1016/j.npep.2015.08.006.
Ling Y.L., Huang S.S., Wang L.F., Zhang J.L., Wan M., Hao R.L. Cholecystokinin-octapeptide (CCK-8) reverses experimental endotoxin shock. Sheng Li Xue Bao 1996; 48(4): 390–394.
Guarini S., Bazzani C., Leo L., Bertolini A. Haematological changes induced by the intravenous injection of CCK-8 in rats subjected to haemorrhagic shock. Neuropeptides 1988; 11(2): 69–72, doi: 10.1016/0143-4179(88)90012-1.
Felicio L.F., Mann P.E., Bridges R.S. Intracerebroventricular cholecystokinin infusions block beta-endorphin-induced disruption of maternal behavior. Pharmacol. Biochem. Behav. 1991; 39(1): 201–204, doi: 10.1016/0091-3057(91)90422-x.
Krawiec A., Jasikowska K., Chojnacka K., Mitera A., Jochem J. Involvement of central histaminergic system in cardiovascular effects of Y1 receptor antagonist BIBP 3226 in haemorrhagic shock in rats. Ann. Acad. Med. Siles. 2017; 71: 357–362, doi: 10.18794/aams/67571.
Jochem J., Żak A., Rybczyk R., Irman-Florjanc T. Interactions between the serotonergic and histaminergic systems in the central cardiovascular regulation in haemorrhage-shocked rats: involvement of 5-HT(1A) receptors. Inflamm. Res. 2009; 58(Suppl 1): S38–S40, doi: 10.1007/s00011-009-0658-6.
Jochem J. Central histamine-induced reversal of critical haemorrhagic hypotension in rats – haemodynamic studies. J. Physiol. Pharmacol. 2002; 53(1): 75–84.
Jochem J. Haematological, blood gas and acid-base effects of central histamine-induced reversal of critical haemorrhagic hypotension in rats. J. Physiol. Pharmacol. 2001; 52(3): 447–458.
Giuliani D., Ottani A., Altavilla D., Bazzani C., Squadrito F., Guarini S. Melanocortins and the cholinergic anti-inflammatory pathway. Adv. Exp. Med. Biol. 2010; 681: 71–87, doi: 10.1007/978-1-4419-6354-3_6.
Guarini S., Bertolini A., Lancellotti N., Rompianesi E., Ferrari W. Different cholinergic pathways are involved in the improvement induced by CCK-8 and by ACTH-(1-24) in massive acute hemorrhage, in rats. Pharmacol. Res. Commun. 1987; 19(7): 511–516, doi: 10.1016/0031-6989(87)90111-1.
Gaw A.J., Hills D.M., Spraggs C.F. Characterization of the receptors and mechanisms involved in the cardiovascular actions of sCCK-8 in the pithed rat. Br. J. Pharmacol. 1995; 115(4): 660–664, doi: 10.1111/j.1476-5381.1995.tb14983.x.