Ośrodkowo działająca cholecystokinina wywołuje działanie depresyjne na układ krążenia u szczurów we wstrząsie krwotocznym
 
Więcej
Ukryj
1
Katedra i Zakład Fizjologii, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach
 
2
Wydział Lekarski, Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu
 
 
Autor do korespondencji
Jerzy Jochem   

Katedra i Zakład Fizjologii, Wydział Nauk Medycznych w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach, ul. Jordana 19, 41-808 Zabrze
 
 
Ann. Acad. Med. Siles. 2021;75:18-23
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Wstęp:
Cholecystokinina (CCK) należy do hormonów peptydowych układu pokarmowego regulujących trawienie lipidów i białek, a ponadto jest ośrodkowym neurotransmiterem/neuromodulatorem. Po podaniu dożylnym wywołuje efekt resuscytacyjny u szczurów we wstrząsie krwotocznym. Ze względu na fakt, iż CCK może wpływać bezpośrednio i pośrednio na czynność ośrodka sercowo-naczyniowego, celem pracy było zbadanie działania pochodnej siarczanowej oktapeptydu CCK (CCK-8) podawanej do komory bocznej mózgu (intracerebroventricularly – icv) w fazie hamowania czynności układu współczulnego we wstrząsie krwotocznym.

Materiał i metody:
Badania przeprowadzono u samców szczurów szczepu Wistar w znieczuleniu ogólnym (ketamina [100 mg/kg]/ksylazyna [10 mg/kg]), u których wywołano nieodwracalny wstrząs krwotoczny (0% przeżycia 2 h) ze średnim ciśnieniem tętniczym (mean arterial pressure – MAP) 20–25 mmHg. W 5 min krytycznej hipotensji szczurom podawano icv CCK-8 (5, 15 nmol) lub 0,9% roztwór NaCl (5 μl).

Wyniki:
Krwotok prowadził do obniżenia ciśnienia tętna (pulse pressure – PP), częstości rytmu serca (heart rate – HR) oraz wzrostu nerkowego (renal vascular resistance – RVR) i krezkowego oporu naczyniowego (mesenteric vascular resistance – MVR). W grupie kontrolnej nie stwierdzono wzrostu badanych parametrów układu krążenia, a średni czas przeżycia wynosił 32,5 ± 5,1 min. CCK-8 wywoływała zależne od dawki spadki MAP, PP i HR ze wzrostem RVR i MVR, a także skracała czas przeżycia w porównaniu ze zwierzętami kontrolnymi.

Wnioski:
Ośrodkowo działająca CCK-8 wywołuje działanie depresyjne na układ krążenia u szczurów we wstrząsie krwotocznym.

 
REFERENCJE (27)
1.
Jacobsen J., Secher N.H. Heart rate during haemorrhagic shock. Clin. Physiol. 1992; 12(6): 659–666, doi: 10.1111/j.1475-097x.1992.tb00369.x.
 
2.
Schadt J.C., Ludbrook J. Hemodynamic and neurohumoral responses to acute hypovolemia in conscious mammals. Am. J. Physiol. 1991; 260(2 Pt 2): H305–H318, doi: 10.1152/ajpheart.1991.260.2.H305.
 
3.
Bertolini A. The opioid/anti-opioid balance in shock: a new target for therapy in resuscitation. Resuscitation 1995; 30(1): 29–42, doi: 10.1016/0300-9572(94)00863-b.
 
4.
Bertolini A., Ferrari W., Guarini S. The adrenocorticotropic hormone (ACTH)-induced reversal of hemorrhagic shock. Resuscitation 1989; 18(2–3): 253–267, doi: 10.1016/0300-9572(89)90027-0.
 
5.
Jochem J. Cardiovascular effects of histamine administered intracerebroventricularly in critical haemorrhagic hypotension in rats. J. Physiol. Pharmacol. 2000; 51(2): 229–239.
 
6.
Jochem J., Kasperska-Zając A. The role of the histaminergic system in the central cardiovascular regulation in haemorrhagic hypotension. Folia Med. Cracov. 2012; 52(3–4): 31–41.
 
7.
Hökfelt T., Cortés R., Schalling M., Ceccatelli S., Pelto-Huikko M., Persson H., Villar M.J. Distribution patterns of CCK and CCK mRNA in some neuronal and non-neuronal tissues. Neuropeptides 1991; 19 Suppl: 31–43, doi: 10.1016/0143-4179(91)90081-s.
 
8.
Fink H., Rex A., Voits M., Voigt J.P. Major biological actions of CCK – a critical evaluation of research findings. Exp. Brain Res. 1998; 123(1–2): 77–83, doi: 10.1007/s002210050546.
 
9.
Zanchi D., Depoorter A., Egloff L., Haller S., Mählmann L., Lang U.E. et al. The impact of gut hormones on the neural circuit of appetite and satiety: A systematic review. Neurosci. Biobehav. Rev. 2017; 80: 457–475, doi: 10.1016/j.neubiorev.2017.06.013.
 
10.
Harro J. CCK and NPY as anti-anxiety treatment targets: promises, pitfalls, and strategies. Amino Acids 2006; 31(3): 215–230, doi: 10.1007/s00726-006-0334-x.
 
11.
Shen C.J., Zheng D., Li K.X., Yang J.M., Pan H.Q., Yu X.D. et al. Cannabinoid CB1 receptors in the amygdalar cholecystokinin glutamatergic afferents to nucleus accumbens modulate depressive-like behavior. Nat. Med. 2019; 25(2): 337–349, doi: 10.1038/s41591-018-0299-9.
 
12.
Whissell P.D., Bang J.Y., Khan I., Xie Y.F., Parfitt G.M., Grenon M. Selective activation of cholecystokinin-expressing GABA (CCK-GABA) neurons enhances memory and cognition. eNeuro 2019; 6(1): ENEURO0360-18.2019, doi: 10.1523/ENEURO.0360-18.2019.
 
13.
Roman C.W., Derkach V.A., Palmiter R.D. Genetically and functionally defined NTS to PBN brain circuits mediating anorexia. Nat. Commun. 2016; 7: 11905, doi: 10.1038/ncomms11905.
 
14.
Sartor D.M., Verberne A.J. Cholecystokinin selectively affects presympathetic vasomotor neurons and sympathetic vasomotor outflow. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002; 282(4): R1174–1184, doi: 10.1152/ajpregu.00500.2001.
 
15.
Sugeta S., Hirai Y., Maezawa H., Inoue N., Yamazaki Y., Funahashi M. Presynaptically mediated effects of cholecystokinin-8 on the excitability of area postrema neurons in rat brain slices. Brain Res. 2015; 1618: 83–90, doi: 10.1016/j.brainres.2015.05.018.
 
16.
Verberne A.J., Sartor D.M. CCK-induced inhibition of presympathetic vasomotor neurons: dependence on subdiaphragmatic vagal afferents and central NMDA receptors in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004; 287(4): R809–816, doi: 10.1152/ajpregu.00258.2004.
 
17.
Kaczyńska K., Szereda-Przestaszewska M. Contribution of CCK1 receptors to cardiovascular and respiratory effects of cholecystokinin in anesthetized rats. Neuropeptides 2015; 54: 29–34, doi: 10.1016/j.npep.2015.08.006.
 
18.
Ling Y.L., Huang S.S., Wang L.F., Zhang J.L., Wan M., Hao R.L. Cholecystokinin-octapeptide (CCK-8) reverses experimental endotoxin shock. Sheng Li Xue Bao 1996; 48(4): 390–394.
 
19.
Guarini S., Bazzani C., Leo L., Bertolini A. Haematological changes induced by the intravenous injection of CCK-8 in rats subjected to haemorrhagic shock. Neuropeptides 1988; 11(2): 69–72, doi: 10.1016/0143-4179(88)90012-1.
 
20.
Felicio L.F., Mann P.E., Bridges R.S. Intracerebroventricular cholecystokinin infusions block beta-endorphin-induced disruption of maternal behavior. Pharmacol. Biochem. Behav. 1991; 39(1): 201–204, doi: 10.1016/0091-3057(91)90422-x.
 
21.
Krawiec A., Jasikowska K., Chojnacka K., Mitera A., Jochem J. Involvement of central histaminergic system in cardiovascular effects of Y1 receptor antagonist BIBP 3226 in haemorrhagic shock in rats. Ann. Acad. Med. Siles. 2017; 71: 357–362, doi: 10.18794/aams/67571.
 
22.
Jochem J., Żak A., Rybczyk R., Irman-Florjanc T. Interactions between the serotonergic and histaminergic systems in the central cardiovascular regulation in haemorrhage-shocked rats: involvement of 5-HT(1A) receptors. Inflamm. Res. 2009; 58(Suppl 1): S38–S40, doi: 10.1007/s00011-009-0658-6.
 
23.
Jochem J. Central histamine-induced reversal of critical haemorrhagic hypotension in rats – haemodynamic studies. J. Physiol. Pharmacol. 2002; 53(1): 75–84.
 
24.
Jochem J. Haematological, blood gas and acid-base effects of central histamine-induced reversal of critical haemorrhagic hypotension in rats. J. Physiol. Pharmacol. 2001; 52(3): 447–458.
 
25.
Giuliani D., Ottani A., Altavilla D., Bazzani C., Squadrito F., Guarini S. Melanocortins and the cholinergic anti-inflammatory pathway. Adv. Exp. Med. Biol. 2010; 681: 71–87, doi: 10.1007/978-1-4419-6354-3_6.
 
26.
Guarini S., Bertolini A., Lancellotti N., Rompianesi E., Ferrari W. Different cholinergic pathways are involved in the improvement induced by CCK-8 and by ACTH-(1-24) in massive acute hemorrhage, in rats. Pharmacol. Res. Commun. 1987; 19(7): 511–516, doi: 10.1016/0031-6989(87)90111-1.
 
27.
Gaw A.J., Hills D.M., Spraggs C.F. Characterization of the receptors and mechanisms involved in the cardiovascular actions of sCCK-8 in the pithed rat. Br. J. Pharmacol. 1995; 115(4): 660–664, doi: 10.1111/j.1476-5381.1995.tb14983.x.
 
eISSN:1734-025X
Journals System - logo
Scroll to top