Malondialdehyde (MDA) – product of lipid peroxidation as marker of homeostasis disorders and aging
More details
Hide details
Department of Human Nutrition, School of Public Health in Bytom, Medical University of Silesia in Katowice, Poland
Department of Internal Medicine, School of Public Health in Bytom, Medical University of Silesia in Katowice, Poland
Katarzyna Weronika Walkiewicz   

Department of Internal Medicine, School of Public Health in Bytom, Medical University of Silesia in Katowice, Poland, ul. Piekarska 18, 41-902 Bytom, tel. 32 281 21 22,
Ann. Acad. Med. Siles. 2016;70:224–228
Malondialdehyde (MDA) found in the body comes from two sources: food consumed and lipid peroxidation occurring in the tissues. The formation of MDA and the scale and rate of lipid oxidation in the tissues of living organisms is influenced by a number of endo- and exogeneous factors. The products of lipid peroxidation, in particular MDA, exhibit cytotoxic, mutagenic and carcinogenic properties. They can also inhibit enzymes associated with defending cells against oxidative stress. Not only do the occurring processes contribute to the development of many diseases, but they are also a part of the aging process. The body defends itself to some extent against the effects of free radicals by trapping and neutralising them. The main source of antioxidants is food products of plant origin. Lifestyle, the components of which are diet and physical activity, is an important element in preserving health understood as physical and psychological well-being. Dietary habits and a diet rich in antioxidants are modifiable factors which not only prevent age-associated diseases, but also delay aging processes.
Demography Report 2010. Older, more numerous and diverse Euro-peans, European Commission, 2011; resources/ /EUL14135_ Demographyreport_ web.pd.
European Commission (DG ECFIN) and Economic Policy Committee (Ageing Working Group). The 2015 Ageing Report. Economic and budgetary projections for the 28 EU Member States 2013–2030. Luxembourg: Publications Office of the European Union, 2015.
Harman D. Aging: a theory based on free radicals and radiation che-mistry. J. Gerontol. 1956; 11(3): 288–300.
Dmitriev L.F., Titov V.N. Lipid peroxidation in relation to ageing and the role of endogenous aldehydes in diabetes and other age-related diseases. Ageing Res. Rev. 2010; 9(2): 200–210.
Niedworok E., Bielaszka A. Comparison of the Effect of Vitamins A and E on Aging Processes of Edible Vegetable Oils. Polish J. of Environ. Stud. 2007; 16(6): 861–865.
Marnett L.J, Bienkowski M.J, Raban M., Tuttle M.A. Studies of the hydrolysis of14C-labeled tetraethoxypropane to malondialdehyde. Anal. Biochem. 1979; 99: 458–463.
Valko M., Rhodes C.J., Moncol J., Izakovic M., Mazur M. Free radicals, metals and antioxidants in oxidative stress – induced cancer. Chem. Biol. Interact. 2006; 160: 1–40.
Marnett L.J. Oxy radicals, lipid peroxidation and DNA damage. Toxicol 2002; 181–182: 219–222.
Blair I.A. Lipid hydroperoxide-mediated DNA damage. Exp. Gerontol. 2001; 36: 1473–1481.
Niederhofer L.J., Daniels J.S., Rouzer C.A., Greene R.E., Marnett L.J. Malondialdehyde, a product of lipid peroxidation, is mutagenic in human cells. J. Biol. Chem. 2003; 278(33): 31426–31433.
Chen J.I., Petersen D.R., Schenker S., Henderson G.I. Formation of malondialdehyde adducts in livers of rats exposed to ethanol: role in ethanol-mediated inhibition of cytochrome c oxidase. Alcohol Clin. Exp. Res. 2000; 24(4): 544–552.
Casado A., Encarnación López-Fernández M., Concepción Casado M., de La Torre R. Lipid peroxidation and antioxidant enzyme activities in vascular and Alzheimer dementias. Neurochem Res. 2008; 33(3): 450–458.
Siu G.M., Draper H.H. Metabolism of malonaldehyde in vivo and in vitro. Lipids 1982; 17(5): 349–355.
Raghavan S., Subramaniyam G., Shanmugam N. Proinflammatory effects of malondialdehyde in lymphocytes. J. Leukoc. Biol. 2012; 92(5): 1055–1067.
Yang I.Y., Chan G., Miller H., Huang Y., Torres M.C., Johnson F., Moriya M. Mutagenesis by acrolein-derived propane deoxyguanosine adducts in human cells. Biochemistry 2002; 41: 13826–13832.
De Bont R., Van Larebeke N. Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis 2004; 19: 169–185.
Veneskoski M., Turunen S.P., Kummu O., Nissinen A., Rnnikko S., Levonen A.L., Hörkkö S. Specific recognition of malondialdehyde and malondialdehyde acetaldehyde adducts on oxidized LDL and apoptotic cells by complement anaphylatoxin C3a. Free Radical Biol. Med. 2011; 51(4): 834–843.
Rani V., Yadav U.C. Free radicals in Human Health and Diseases. Springer. India 2015.
Gil L., Siems W., Mazurek B., Gross J., Schroeder P., Voss P., Grune T. Age-associated analysis of oxidative stress parameters in human plasma and erythrocytes. Free Radic. Res. 2006; 40: 495–505.
Suresh D.R., Sendil K., Annam V., Hamasaveena Age related changes in malondialdehyde: total antioxidant capacity ratio- a novel marker of oxidative stress. Int. J. Pharm. Bio. Sci. 2010; 1(2): 1–6.
Jha R., Rizvi S.I. Carbonyl formation in erythrocyte membrane proteins during aging in humans. Biomed Pap. Med. Fac. Univ. Palacky Olomunc 2011; 155(1): 39–42.
Mahla V.K., Mahla M., Gupta R.C., Rawtani J. A study to evaluate the effect of menopause on oxidative stress. International Journal of Physiology 2014; 2(1): 118–123.
Casado A., Encarnación López-Fernández M., Concepción Casado M., de La Torre R. Lipid peroxidation and antioxidant enzyme activities in vascular and Alzheimer dementias. Neurochem. Res. 2008; 33(3): 450–458.
Dzięgielewska-Gęsiak S., Wysocka E., Michalak S., Nowakowska-Zaj-del E., Kokot T., Muc-Wierzgoń M. Role of lipid peroxidation products, plasma total antioxidant atatus, and Cu-, Zn-superoxide dismutase activity as biomarkers of oxidative stress in elderly prediabetics. Oxid. Med. Cell. Longev 2014; 2014: ID987303, p. 1–8.
Karolkiewicz J. Effects of oxidative stress and free-radical mediated damage on cell structure and function – connection to aging process. Ge-rontol. Pol. 2011; 19(2): 59–67.
Klaunig J., Kamendulis L., Hocevar B. Oxidative stress and oxidative damage in carcinogenesis. Toxicol Pathol. 2010; 38(1): 96–109.
Sosa V., Moliné T., Somoza R. Paciucci R., Kondoh H., Lleonart M.E. Oxidative stress and cancer: An overview Ageing Res. Rev. 2013; 12: 376–390.
Parše M. Oxidative stress in the pathogenesis of colorectal cancer: cause or consequence? Biomed Res. Int. 2013; ID 725710.
Gönenç A., Ozkan Y., Torun M., Simşek B. Plasma malondialdehyde (MDA) levels in breast and lung cancer patients. J. Clin. Pharm. Therap. 2001; 26(2): 141–144.
Aznar J., Santos M.T., Valles J., Sala J. Serum malondialdehyde-like material (MDA-LM) in acute myocardial infarction. J. Clin. Pathol. 1983; 36: 712–715.
Lee R., Margaritis N., Channon K.M., Antoniades C. Evaluating Oxidative Stress in Human Cardiovascular Disease: Methodological Aspects and Considerations. Curr. Med. Chem. 2012; 19(16): 2504–2520.
Antoniades C., Antonopoulos A.S., Bendall J.K., Channon K.M. Targeting redox signaling in the vascular wall: from basic science to clinical practice. Curr. Pharm. Des. 2009; 15: 329–342.
Walter M.F., Jacob R.F., Bjork R.E., Jeffers B., Buch J., Mizuno Y., Mason R.P. Circulating lipid hydroperoxides predict cardiovascular events in patients with stable coronary artery disease: the PREVENT study. J. Am. Coll. Cardiol. 2008; 51(12 ): 1196–1202.
Li G., Chen Y., Hu H., Liu L., Hu X., Wang J., Shi W., Yin D. Association between age-related decline of kidney function and plasma malondiadehyde. Rejuvenation Res. 2012; 15(3): 257–264.
Ostalowska A., Koczy B., Słowińska L., Kasperczyk A. Oxidative stress and enzymatic antioxidant status of blood and synovial fluid in rheumatoid arthritis patients. Ann. Acad. Med. Siles. 2016; 70: 196–205.
Wiktorowska-Owczarek A., Nowak J.Z. Pathogenesis and prophylaxis of AMD: focus on oxidative stress and antioxidants. Postepy Hig. Med. Dosw. 2010; 64: 333–343.
Wang H., Zhao B., Vrcek I., Johnston J.M. Role of Malondialdehyde in the Age-Related Macular Degeneration. In: Oxidative Stress in Applied Basic Research and Clinical Practice. Ed. Sttraton et al. Springer Science + Business Media. LLC 2012, s. 85–93.
Ates O., Azizi S., Alp H.H., Kiziltunc A., Beydemir S., Cinici E., Kocer I., Baykal O. Decreased serum paraoxonase 1 activity and increased serum homocysteine and malondialdehyde levels in age-related macular degeneration. Tohoku J. Exp. Med. 2009; 217: 17–22.
Gutowicz M. The influence of reactive oxygen species on the central nervous system. Postepy Hig. Med. Dosw. 2011; 65: 104–113.
Andersen J.K. Oxidative stress in neurodegeneration: cause or con-sequence? Nat. Med. 2004; 10 Suppl: S18–28.
Hensley K., Maidt M.L., Sang H., Markesbery W.R., Floyd R.A. Ele-ctrochemical analysis of protein nitrotyrosine and dityrosine in the Alzheimer brain indicates region-specific accumulation. J. Neurosci. 1998; 18, 8126–8132.
Bulut M., Selek S., Gergerlioglu S., Savas H.A., Yilmaz R.H., Yuce M., Ekici G. Malondialdehyde levels in adult attention-deficit hyperactivity disorder. J. Psychiatry Neurosci. 2007; 32(6): 435–438.
MeiLian T., NingNing X., Ming Fang Y., JinFeng Ch., XingChu Y. Effects of sunflower artificial aging on seed vigor and physiological characteristics. Agricultural Sci Tech. 2010; 11(4): 39–43.
Pamplona R., Barja G. Mitochorndrial oxidative stress, aging and caloric restriction: the protein and methionine connection. Biochim. Biophys. Acta. 2006; 1757: 496–508.