Department of Human Nutrition, School of Public Health in Bytom, Medical University of Silesia in Katowice, Poland
2
Department of Internal Medicine, School of Public Health in Bytom, Medical University of Silesia in Katowice, Poland
AUTOR DO KORESPONDENCJI
Katarzyna Weronika Walkiewicz
Department of Internal Medicine, School of Public Health in Bytom, Medical University of Silesia in Katowice, Poland, ul. Piekarska 18, 41-902 Bytom, tel. 32 281 21 22,
Dialdehyd malonowy (MDA) w organizmie człowieka pochodzi z dwóch źródeł: spożywanego pokarmu i peroksydacji lipidów występujących w tkankach. Powstawanie MDA, a także wielkość i szybkość utleniania lipidów w tkankach organizmów żywych, zależy od wielu czynników endo- i egzogennych. Produkty peroksydacji lipidów, szczególnie MDA, wykazują właściwości cytotoksyczne, mutagenne i rakotwórcze. Mogą one również hamować enzymy związane z obroną komórki przed stresem oksydacyjnym. Mogą nie tylko przyczyniać się do rozwoju wielu chorób, ale stanowią również część procesu starzenia się. Organizm broni się w pewnym stopniu przed działaniem wolnych rodników, neutralizując je. Głównym źródłem przeciwutleniaczy jest żywność – produkty pochodzenia roślinnego. Styl życia, na który składają się dieta i aktywność fizyczna, jest ważnym elementem w zachowaniu zdrowia rozumianego jako dobre samopoczucie fizyczne i psychiczne. Nawyki żywieniowe i dieta bogata w przeciwutleniacze są modyfikowalnymi czynnikami, które nie tylko zapobiegają chorobom związanym z wiekiem, ale także opóźniają procesy starzenia.
REFERENCJE(44)
1.
Demography Report 2010. Older, more numerous and diverse Euro-peans, European Commission, 2011; www.healthyageing.eu/file resources/ /EUL14135_ Demographyreport_ web.pd.
European Commission (DG ECFIN) and Economic Policy Committee (Ageing Working Group). The 2015 Ageing Report. Economic and budgetary projections for the 28 EU Member States 2013–2030. Luxembourg: Publications Office of the European Union, 2015.
Dmitriev L.F., Titov V.N. Lipid peroxidation in relation to ageing and the role of endogenous aldehydes in diabetes and other age-related diseases. Ageing Res. Rev. 2010; 9(2): 200–210.
Niedworok E., Bielaszka A. Comparison of the Effect of Vitamins A and E on Aging Processes of Edible Vegetable Oils. Polish J. of Environ. Stud. 2007; 16(6): 861–865.
Marnett L.J, Bienkowski M.J, Raban M., Tuttle M.A. Studies of the hydrolysis of14C-labeled tetraethoxypropane to malondialdehyde. Anal. Biochem. 1979; 99: 458–463.
Niederhofer L.J., Daniels J.S., Rouzer C.A., Greene R.E., Marnett L.J. Malondialdehyde, a product of lipid peroxidation, is mutagenic in human cells. J. Biol. Chem. 2003; 278(33): 31426–31433.
Chen J.I., Petersen D.R., Schenker S., Henderson G.I. Formation of malondialdehyde adducts in livers of rats exposed to ethanol: role in ethanol-mediated inhibition of cytochrome c oxidase. Alcohol Clin. Exp. Res. 2000; 24(4): 544–552.
Casado A., Encarnación López-Fernández M., Concepción Casado M., de La Torre R. Lipid peroxidation and antioxidant enzyme activities in vascular and Alzheimer dementias. Neurochem Res. 2008; 33(3): 450–458.
Yang I.Y., Chan G., Miller H., Huang Y., Torres M.C., Johnson F., Moriya M. Mutagenesis by acrolein-derived propane deoxyguanosine adducts in human cells. Biochemistry 2002; 41: 13826–13832.
Veneskoski M., Turunen S.P., Kummu O., Nissinen A., Rnnikko S., Levonen A.L., Hörkkö S. Specific recognition of malondialdehyde and malondialdehyde acetaldehyde adducts on oxidized LDL and apoptotic cells by complement anaphylatoxin C3a. Free Radical Biol. Med. 2011; 51(4): 834–843.
Gil L., Siems W., Mazurek B., Gross J., Schroeder P., Voss P., Grune T. Age-associated analysis of oxidative stress parameters in human plasma and erythrocytes. Free Radic. Res. 2006; 40: 495–505.
Suresh D.R., Sendil K., Annam V., Hamasaveena Age related changes in malondialdehyde: total antioxidant capacity ratio- a novel marker of oxidative stress. Int. J. Pharm. Bio. Sci. 2010; 1(2): 1–6.
Mahla V.K., Mahla M., Gupta R.C., Rawtani J. A study to evaluate the effect of menopause on oxidative stress. International Journal of Physiology 2014; 2(1): 118–123.
Casado A., Encarnación López-Fernández M., Concepción Casado M., de La Torre R. Lipid peroxidation and antioxidant enzyme activities in vascular and Alzheimer dementias. Neurochem. Res. 2008; 33(3): 450–458.
Dzięgielewska-Gęsiak S., Wysocka E., Michalak S., Nowakowska-Zaj-del E., Kokot T., Muc-Wierzgoń M. Role of lipid peroxidation products, plasma total antioxidant atatus, and Cu-, Zn-superoxide dismutase activity as biomarkers of oxidative stress in elderly prediabetics. Oxid. Med. Cell. Longev 2014; 2014: ID987303, p. 1–8.
Karolkiewicz J. Effects of oxidative stress and free-radical mediated damage on cell structure and function – connection to aging process. Ge-rontol. Pol. 2011; 19(2): 59–67.
Gönenç A., Ozkan Y., Torun M., Simşek B. Plasma malondialdehyde (MDA) levels in breast and lung cancer patients. J. Clin. Pharm. Therap. 2001; 26(2): 141–144.
Aznar J., Santos M.T., Valles J., Sala J. Serum malondialdehyde-like material (MDA-LM) in acute myocardial infarction. J. Clin. Pathol. 1983; 36: 712–715.
Lee R., Margaritis N., Channon K.M., Antoniades C. Evaluating Oxidative Stress in Human Cardiovascular Disease: Methodological Aspects and Considerations. Curr. Med. Chem. 2012; 19(16): 2504–2520.
Li G., Chen Y., Hu H., Liu L., Hu X., Wang J., Shi W., Yin D. Association between age-related decline of kidney function and plasma malondiadehyde. Rejuvenation Res. 2012; 15(3): 257–264.
Ostalowska A., Koczy B., Słowińska L., Kasperczyk A. Oxidative stress and enzymatic antioxidant status of blood and synovial fluid in rheumatoid arthritis patients. Ann. Acad. Med. Siles. 2016; 70: 196–205.
Wiktorowska-Owczarek A., Nowak J.Z. Pathogenesis and prophylaxis of AMD: focus on oxidative stress and antioxidants. Postepy Hig. Med. Dosw. 2010; 64: 333–343.
Wang H., Zhao B., Vrcek I., Johnston J.M. Role of Malondialdehyde in the Age-Related Macular Degeneration. In: Oxidative Stress in Applied Basic Research and Clinical Practice. Ed. Sttraton et al. Springer Science + Business Media. LLC 2012, s. 85–93.
Ates O., Azizi S., Alp H.H., Kiziltunc A., Beydemir S., Cinici E., Kocer I., Baykal O. Decreased serum paraoxonase 1 activity and increased serum homocysteine and malondialdehyde levels in age-related macular degeneration. Tohoku J. Exp. Med. 2009; 217: 17–22.
Hensley K., Maidt M.L., Sang H., Markesbery W.R., Floyd R.A. Ele-ctrochemical analysis of protein nitrotyrosine and dityrosine in the Alzheimer brain indicates region-specific accumulation. J. Neurosci. 1998; 18, 8126–8132.
Bulut M., Selek S., Gergerlioglu S., Savas H.A., Yilmaz R.H., Yuce M., Ekici G. Malondialdehyde levels in adult attention-deficit hyperactivity disorder. J. Psychiatry Neurosci. 2007; 32(6): 435–438.
Pamplona R., Barja G. Mitochorndrial oxidative stress, aging and caloric restriction: the protein and methionine connection. Biochim. Biophys. Acta. 2006; 1757: 496–508.
Protective Effects of Sesamol on Systemic Inflammation and Cognitive Impairment in Aging Mice Bo Ren, Tian Yuan, Xinglin Zhang, Luanfeng Wang, Junru Pan, Yan Liu, Beita Zhao, Weiyang Zhao, Zhigang Liu, Xuebo Liu Journal of Agricultural and Food Chemistry
Evaluation of the effect of thymoquinone in
d
‐galactose‐induced memory impairments in rats: Role of
MAPK
, oxidative stress, and neuroinflammation pathways and telomere length Zahra Oskouei, Soghra Mehri, Fatemeh Kalalinia, Hossein Hosseinzadeh Phytotherapy Research
Exposure to per- and polyfluoroalkyl substances and premature skin aging Sayed Mousavi, Juana Delgado-Saborit, Lode Godderis Journal of Hazardous Materials
Cu(II) Complexes with FomA Protein Fragments of Fusobacterium Nucleatum Increase Oxidative Stress and Malondialdehyde Level Monika Lesiów, Piotr Pietrzyk, Agnieszka Kyzioł, Urszula Komarnicka Chemical Research in Toxicology
Synergistic effects of Ficus Carica extract and extra virgin olive oil against oxidative injury, cytokine liberation, and inflammation mediated by 5-Fluorouracil in cardiac and renal tissues of male albino rats Mona Elghareeb, Gehad Elshopakey, Basma Hendam, Shaymaa Rezk, Samah Lashen Environmental Science and Pollution Research
Inhibitory Effects of Selenium on Arsenic-Induced Anxiety-/Depression-Like Behavior and Memory Impairment Noreen Samad, Tazeen Rao, Muhammad Rehman, Sheraz Bhatti, Imran Imran Biological Trace Element Research
Evaluation of the Low Inclusion of Full-Fatted Hermetia illucens Larvae Meal for Layer Chickens: Growth Performance, Nutrient Digestibility, and Gut Health Xiaohua Chu, Mengmeng Li, Guiying Wang, Kuiming Wang, Rongsheng Shang, Ziyu Wang, Lusheng Li Frontiers in Veterinary Science
Pro-Oxidant Enzymes, Redox Balance and Oxidative Damage to Proteins, Lipids and DNA in Colorectal Cancer Tissue. Is Oxidative Stress Dependent on Tumour Budding and Inflammatory Infiltration? Justyna Zińczuk, Mateusz Maciejczyk, Konrad Zaręba, Anna Pryczynicz, Violetta Dymicka-Piekarska, Joanna Kamińska, Olga Koper-Lenkiewicz, Joanna Matowicka-Karna, Bogusław Kędra, Anna Zalewska, Katarzyna Guzińska-Ustymowicz Cancers
ROS-mediated lipid peroxidation as a result of Cu(ii) interaction with FomA protein fragments of F. nucleatum: relevance to colorectal carcinogenesis Monika Lesiów, Urszula Komarnicka, Agnieszka Kyzioł, Alina Bieńko, Piotr Pietrzyk Metallomics
Protective effect of gallic acid against arsenic-induced anxiety−/depression- like behaviors and memory impairment in male rats Noreen Samad, Sadia Jabeen, Imran Imran, Iqra Zulfiqar, Kainat Bilal Metabolic Brain Disease
Effects of Essential Trace Elements and Oxidative Stress on Endemic Arsenism Caused by Coal Burning in PR China Yong Hu, Tingting Xiao, Qi Wang, Bing Liang, Aihua Zhang Biological Trace Element Research
The PKCδ-Nrf2-ARE signalling pathway may be involved in oxidative stress in arsenic-induced liver damage in rats Yong Hu, Chun Yu, Maolin Yao, Lei Wang, Bing Liang, Bixia Zhang, Xiaoxin Huang, Aihua Zhang Environmental Toxicology and Pharmacology
Malondialdehyde (MDA) Production in Atherosclerosis Supplemented with Steamed Tomato Iswari Sri, Muchamad Dafip, Eling Purwantoyo Pakistan Journal of Biological Sciences
Galangin mitigates oxidative stress, inflammation, and apoptosis in a rat model of methotrexate hepatotoxicity Manal Alfwuaires Environmental Science and Pollution Research
Effects of dietary inclusion of Radix Bupleuri extract on the growth performance, and ultrastructural changes and apoptosis of lung epithelial cells in broilers exposed to atmospheric ammonia Shiping Bai, Xi Peng, Caimei Wu, Tong Cai, Jiangfeng Liu, Gang Shu Journal of Animal Science
PENGARUH PEMBERIAN JUS BIT TERFORTIFIKASI FESO4 INSTAN (JUS BEEFE) DALAM MENANGGULANGI ANEMIA ATLET REMAJA PUTRI Mirza Penggalih, Ibtidau Niamilah, Yuga Pramesti, Nia Bactiar, Sheila Wardhani Jurnal Teknologi dan Industri Pangan
Hibiscus sabdariffa in Diabetes Prevention and Treatment—Does It Work? An Evidence-Based Review Daniel Jamrozik, Weronika Borymska, Ilona Kaczmarczyk-Żebrowska Foods
Effects of Probiotic Supplementation during Pregnancy on the Future Maternal Risk of Metabolic Syndrome Aleksandra Obuchowska, Kamila Gorczyca, Arkadiusz Standyło, Karolina Obuchowska, Żaneta Kimber-Trojnar, Magdalena Wierzchowska-Opoka, Bożena Leszczyńska-Gorzelak International Journal of Molecular Sciences
Effect of Dried Apple Pomace (DAP) as a Feed Additive on Antioxidant System in the Rumen Fluid Iga Bartel, Magdalena Koszarska, Kamil Wysocki, Martyna Kozłowska, Małgorzata Szumacher-Strabel, Adam Cieślak, Beata Wyrwał, Aleksandra Szejner, Nina Strzałkowska, Jarosław Horbańczuk, Atanas Atanasov, Artur Jóźwik International Journal of Molecular Sciences
Effects of three feed attractants on the growth performance and meat quality of the largemouth bass (Micropterus salmoides) Yuhua Yue, Mingshi Chen, Xiaoxue Bao, Yingying Yu, Wei Shi, Suksan Kumkhong, Yuhong Liu, Ying Yang, Hui Yu Frontiers in Marine Science
Sacha inchi albumin delays skin‐aging by alleviating inflammation, oxidative stress and regulating gut microbiota in
d‐
galactose
induced‐aging mice Jieyu Zeng, Miaoqing An, Wenni Tian, Kun Wang, Bing Du, Pan Li Journal of the Science of Food and Agriculture
Śląski Uniwersytet Medyczny w Katowicach, jako Operator Serwisu annales.sum.edu.pl, przetwarza dane osobowe zbierane podczas odwiedzania Serwisu. Realizacja funkcji pozyskiwania informacji o Użytkownikach i ich zachowaniu odbywa się poprzez dobrowolnie wprowadzone w formularzach informacje, zapisywanie w urządzeniach końcowych plików cookies (tzw. ciasteczka), a także poprzez gromadzenie logów serwera www, będącego w posiadaniu Operatora Serwisu. Dane, w tym pliki cookies, wykorzystywane są w celu realizacji usług zgodnie z Polityką prywatności. Możesz wyrazić zgodę na przetwarzanie danych w tych celach, odmówić zgody lub uzyskać dostęp do bardziej szczegółowych informacji.