Glikozoaminoglikany – rodzaje, struktura, funkcje i rola w procesach gojenia ran
 
Więcej
Ukryj
1
Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland
 
2
Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland
 
3
Students’ Research Club at the Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medi-cal University of Silesia, Katowice, Poland
 
 
Autor do korespondencji
Paweł Olczyk   

Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland, Kasztanowa 3, 41-200 Sosnowiec
 
 
Ann. Acad. Med. Siles. 2023;77:204-216
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Glikozoaminoglikany (glycosaminoglycans – GAGs) są grupą heteropolisacharydów, w której skład wchodzą: siarczany chondroityny, siarczany dermatanu, siarczany heparanu, heparyny, siarczany keratanu oraz kwas hialuronowy. GAGs zbudowane są z ujemnie naładowanych łańcuchów polisacharydowych, złożonych z powtarzających się jednostek disacharydowych, do których należą reszty N-acetylowanej heksozoaminy – D-glukozoaminy lub D-galaktozoaminy – albo N-siarczanowanej D-glukozoaminy oraz reszty kwasu heksuronowego – D-glukuronowego lub L-iduronowego – albo galaktozy. Wszystkie GAGs, z wyjątkiem kwasu hialuronowego, posiadają grupę siarczanową oraz tworzą, po przyłączeniu do białek rdzeniowych, proteoglikany (proteoglycans – PGs). GAGs pełnią wiele ważnych biologicznych funkcji, determinujących funkcje PGs. Te ostatnie są obecne we wszystkich rodzajach tkanek, uczestniczą w procesach migracji, proliferacji i różnicowania komórek. Występują głównie w macierzy pozakomórkowej (extracellular matrix – ECM), biorąc udział w organizacji ECM, kształtując jej strukturę i właściwości mechaniczne. Pełnią istotną rolę w utrzymaniu homeostazy, a także wywierają wpływ na szereg procesów metabolicznych, takich jak mineralizacja kości i krzepnięcie krwi. PGs (ze względu na silnie ujemny ładunek łańcuchów glikanowych) biorą udział w selektywnej przepuszczalności błon komórkowych. Składniki ECM, w tym GAGs, odgrywają rolę strukturalno-czynnościową podczas gojenia się uszkodzeń tkankowych. Regulują proces gojenia poprzez stanowienie rezerwuaru i modulatora dla cytokin i czynników wzrostu oraz pełnią funkcje strukturalne poprzez wypełnianie ubytków tkankowych podczas procesu naprawczego.
REFERENCJE (92)
1.
Biochemia Harpera: ilustrowana. V.W. Rodwell, D.A. Bender, K.M. Botham, P.J. Kennelly, P.A. Weil [eds]. Wyd. Lekarskie PZWL. Warszawa 2018.
 
2.
Sufleta A., Mazur-Zielińska H. Glycosaminoglycans – structure, biochemical properties and clinical significance. [Article in Polish]. Ann. Acad. Med. Siles. 2010; 64(5–6): 64–68.
 
3.
Daroszewski J., Rybka J., Gamian A. Glycosaminoglycans in the pathogenesis and diagnostics of Graves’s ophthalmopathy. [Article in Polish]. Postepy Hig. Med. Dosw. 2006; 60: 370–378.
 
4.
Kroma A., Feliczak-Guzik A., Nowak I. Zastosowanie glikozaminoglikanów w preparatach kosmetycznych. Chemik 2012; 66(2): 136–139.
 
5.
Toole B.P., Slomiany M.G. Hyaluronan: a constitutive regulator of chemoresistance and malignancy in cancer cells. Semin. Cancer Biol. 2008; 18(4): 244–250, doi: 10.1016/j.semcancer.2008.03.009.
 
6.
Głowacki A., Koźma E.M., Olczyk K., Kucharz E.J. Glikozoaminoglikany – struktura i funkcja. Postepy Biochem. 1995; 41(2): 139–148.
 
7.
Sadowski M., Borzyn-Kłuczyk M., Stypułkowska A., Wiełgat P., Zwierz K. Macierz międzykomórkowa ściany żyły. Przegl. Flebol. 2006; 14: 141–149.
 
8.
Abaterusso C., Gambaro G. The role of glycosaminoglycans and sulodexide in the treatment of diabetic nephropathy. Treat. Endocrinol. 2006; 5(4): 211–222, doi: 10.2165/00024677-200605040-00002.
 
9.
Koźma E.M., Olczyk K., Głowacki A., Bobiński R. An accumulation of proteoglycans in scarred fascia. Mol. Cell. Biochem. 2000; 203(1–2): 103–112, doi: 10.1023/a:1007012321333.
 
10.
Im A.R., Kim Y.S. Role of glycosaminoglycans in wound healing. Arch. Pharm. Sci. Res. 2009; 1(2): 106–114 .
 
11.
Olczyk P., Mencner Ł., Komosinska-Vassev K. The role of the extracellular matrix components in cutaneous wound healing. Biomed Res. Int. 2014; 2014: 747584, doi: 10.1155/2014/747584.
 
12.
Richter R.P., Baranova N.S., Day A.J., Kwok J.C. Glycosaminoglycans in extracellular matrix organisation: are concepts from soft matter physics key to understanding the formation of perineuronal nets? Curr. Opin. Struct. Biol. 2018; 50: 65–74, doi: 10.1016/j.sbi.2017.12.002.
 
13.
Głowacki A., Koźma E.M., Olczyk K. Biosynthesis of keratan sulfate, chondroitin sulfate and dermatan sulfate proteoglycans. [Article in Polish]. Postepy Biochem. 2004; 50(2): 170–181.
 
14.
Prydz K., Dalen K.T. Synthesis and sorting of proteoglycans. J. Cell Sci. 2000; 113 Pt 2: 193–205, doi: 10.1242/jcs.113.2.193.
 
15.
Mizumoto S., Hiroshi Kitagawa H., Sugahara K. Biosynthesis of heparin and heparan sulfate. In: H.G. Garg, R.J. Linhardt, C.A. Hales [eds]. Chemistry and biology of heparin and heparan sulfate. Elsevier. New York 2005, pp. 203–243.
 
16.
Toole B.P. Hyaluronan: from extracellular glue to pericellular cue. Nat. Rev. Cancer 2004; 4(7): 528–539, doi: 10.1038/nrc1391.
 
17.
Winsz-Szczotka K., Mencner Ł., Olczyk K. Metabolism of glycosaminoglycans in the course of juvenile idiopathic arthritis. Postepy Hig. Med. Dosw. 2016; 70: 135–142, doi: 10.5604/17322693.1196355.
 
18.
Pomin V.H., Vignovich W.P., Gonzales A.V., Vasconcelos A.A., Mulloy B. Galactosaminoglycans: medical applications and drawbacks. Molecules 2019; 24(15): 2803, doi: 10.3390/molecules24152803.
 
19.
Zeyland J., Lipiński D., Juzwa W., Pławski A., Słomski R. Structure and application of select glycosaminoglycans. [Article in Polish]. Medycyna Wet. 2006; 62(2): 139–144.
 
20.
Mikami T., Kitagawa H. Biosynthesis and function of chondroitin sulfate. Biochim. Biophys. Acta 2013; 1830(10): 4719–4733, doi: 10.1016/j.bbagen.2013.06.006.
 
21.
Sasarman F., Maftei C., Campeau P.M., Brunel-Guitton C., Mitchell G.A., Allard P. Biosynthesis of glycosaminoglycans: associated disorders and biochemical tests. J. Inherit. Metab. Dis. 2016; 39(2): 173–188, doi: 10.1007/s10545-015-9903-z.
 
22.
Volpi N. Chondroitin sulfate safety and quality. Molecules 2019; 24(8): 1447, doi: 10.3390/molecules24081447.
 
23.
Gandhi N.S., Mancera R.L. The structure of glycosaminoglycans and their interactions with proteins. Chem. Biol. Drug Des. 2008; 72(6): 455–482, doi: 10.1111/j.1747-0285.2008.00741.x.
 
24.
Carlsson P., Kjellén L. Heparin biosynthesis. In: R. Lever, B. Mulloy, C.P. Page [eds]. Heparin – A century of progress. Springer. Berlin, Heidelberg 2012, pp. 23–41, doi: 10.1007/978-3-642-23056-1_2.
 
25.
Wang S., Sugahara K., Li F. Chondroitin sulfate/dermatan sulfate sulfatases from mammals and bacteria. Glycoconj. J. 2016; 33(6): 841–851, doi: 10.1007/s10719-016-9720-0.
 
26.
Silbert J.E., Sugumaran G. Biosynthesis of chondroitin/dermatan sulfate. IUBMB Life 2002; 54(4): 177–186, doi: 10.1080/15216540214923.
 
27.
Mende M., Bednarek C., Wawryszyn M., Sauter P., Biskup M.B., Schepers U. et al. Chemical synthesis of glycosaminoglycans. Chem. Rev. 2016; 116(14): 8193–8255, doi: 10.1021/acs.chemrev.6b00010.
 
28.
Koźma E.M., Głowacki A., Olczyk K., Jaźwiec M. Proteoglycans – structure and functions. [Article in Polish]. Postepy Biochem. 1997; 43(3): 158–172.
 
29.
Kaji T., Sakurai S., Yamamoto C., Fujiwara Y., Yamagishi S., Yamamoto H. et al. Characterization of chondroitin/dermatan sulfate proteoglycans synthesized by bovine retinal pericytes in culture. Biol. Pharm. Bull. 2004; 27(11): 1763–1768, doi: 10.1248/bpb.27.1763.
 
30.
Han J., Zhang F., Xie J., Linhardt R.J., Hiebert L.M. Changes in cultured endothelial cell glycosaminoglycans under hyperglycemic conditions and the effect of insulin and heparin. Cardiovasc. Diabetol. 2009; 8: 46, doi: 10.1186/1475-2840-8-46.
 
31.
Malavaki C., Mizumoto S., Karamanos N., Sugahara K. Recent advances in the structural study of functional chondroitin sulfate and dermatan sulfate in health and disease. Connect. Tissue Res. 2008; 49(3): 133–139, doi: 10.1080/03008200802148546.
 
32.
Kinsella M.G., Bressler S.L., Wight T.N. The regulated synthesis of versican, decorin, and biglycan: extracellular matrix proteoglycans that influence cellular phenotype. Crit. Rev. Eukaryot. Gene Expr. 2004; 14(3): 203–234, doi: 10.1615/critreveukaryotgeneexpr.v14.i3.40.
 
33.
Penc S.F., Pomahac B., Winkler T., Dorschner R.A., Eriksson E., Herndon M. et al. Dermatan sulfate released after injury is a potent promoter of fibroblast growth factor-2 function. J. Biol. Chem. 1998; 273(43): 28116–28121, doi: 10.1074/jbc.273.43.28116.
 
34.
Echtermeyer F., Streit M., Wilcox-Adelman S., Saoncella S., Denhez F., Detmar M. et al. Delayed wound repair and impaired angiogenesis in mice lacking syndecan-4. J. Clin. Invest. 2001; 107(2): R9–R14, doi: 10.1172/JCI10559.
 
35.
Iozzo R.V., Schaefer L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol. 2015; 42: 11–55, doi: 10.1016/j.matbio.2015.02.003.
 
36.
Farrugia B.L., Lord M.S., Melrose J., Whitelock J.M. The role of heparan sulfate in inflammation, and the development of biomimetics as anti-inflammatory strategies. J. Histochem. Cytochem. 2018; 66(4): 321–336, doi: 10.1369/0022155417740881.
 
37.
Sobczak A.I.S., Pitt S.J., Stewart A.J. Glycosaminoglycan neutralization in coagulation control. Arterioscler. Thromb. Vasc. Biol. 2018; 38(6): 1258–1270, doi: 10.1161/ATVBAHA.118.311102.
 
38.
Prydz K. Determinants of glycosaminoglycan (GAG) structure. Biomolecules 2015; 5(3): 2003–2022, doi: 10.3390/biom5032003.
 
39.
Li L., Ly M., Linhardt R.J. Proteoglycan sequence. Mol. Biosyst. 2012; 8(6): 1613–1625, doi: 10.1039/c2mb25021g.
 
40.
Wang W., Wang J., Li F. Hyaluronidase and chondroitinase. In: M.Z. Atassi [ed.]. Protein Reviews. Advances in Experimental Medicine and Biology, vol. 925. Springer. Singapore 2016, pp. 75–87, doi: 10.1007/5584_2016_54.
 
41.
Li J.P., Kusche-Gullberg M. Heparan sulfate: biosynthesis, structure, and function. Int. Rev. Cell Mol. Biol. 2016; 325: 215–273, doi: 10.1016/bs.ircmb.2016.02.009.
 
42.
Collins L.E., Troeberg L. Heparan sulfate as a regulator of inflammation and immunity. J. Leukoc. Biol. 2019; 105(1): 81–92, doi: 10.1002/JLB.3RU0618-246R.
 
43.
Lambers Heerspink H.J., Fowler M.J., Volgi J., Reutens A.T., Klein I., Herskovits T.A. et al. Rationale for and study design of the sulodexide trials in Type 2 diabetic, hypertensive patients with microalbuminuria or overt nephropathy: Short report. Diabet. Med. 2007; 24(11): 1290–1295, doi: 10.1111/j.1464-5491.2007.02249.x.
 
44.
Lauver D.A., Lucchesi B.R. Sulodexide: a renewed interest in this glycosaminoglycan. Cardiovasc. Drug Rev. 2006; 24(3–4): 214–226, doi: 10.1111/j.1527-3466.2006.00214.x.
 
45.
Rabenstein D.L. Heparin and heparan sulfate: structure and function. Nat. Prod. Rep. 2002; 19(3): 312–331, doi: 10.1039/b100916h.
 
46.
Cecora A., Chwała M. Czy glikozaminoglikany zmieniają właściwości ściany żylnej w warunkach zastoju krwi u chorych z przewlekłą niewydolnością żylną? Przeg. Flebolog. 2003; 11: 85–89.
 
47.
Ravera M., Re M., Weiss U., Deferrari L., Deferrari G. Emerging therapeutic strategies in diabetic nephropathy. J. Nephrol. 2007; 20 Suppl 12: S23–32.
 
48.
Olczyk P., Mencner Ł., Komosinska-Vassev K. Diverse roles of heparan sulfate and heparin in wound repair. Biomed Res. Int. 2015; 2015: 549417, doi: 10.1155/2015/549417.
 
49.
Funderburgh J.L. Keratan sulfate biosynthesis. IUBMB Life 2002; 54(4): 187–194, doi: 10.1080/15216540214932.
 
50.
Caterson B., Melrose J. Keratan sulfate, a complex glycosaminoglycan with unique functional capability. Glycobiology 2018; 28(4): 182–206, doi: 10.1093/glycob/cwy003.
 
51.
Czajkowska D., Milner-Krawczyk M., Kazanecka M. Kwas hialuronowy – charakterystyka, otrzymywanie i zastosowanie. Biotechnol. Food Sci. 2011; 76(2): 55–70, doi: 10.34658/bfs.2011.75.2.55-70.
 
52.
Heinegård D. Proteoglycans and more – from molecules to biology. Int. J. Exp. Pathol. 2009; 90(6): 575–586, doi: 10.1111/j.1365-2613.2009.00695.x.
 
53.
Rügheimer L. Hyaluronan: a matrix component. AIP Conf. Proc. 2008; 1049: 126–132, doi: 10.1063/1.2998008.
 
54.
Kablik J., Monheit G.D., Yu L., Chang G., Gershkovich J. Comparative physical properties of hyaluronic acid dermal fillers. Dermatol. Surg. 2009; 35 Suppl 1: 302–312, doi: 10.1111/j.1524-4725.2008.01046.x.
 
55.
Olczyk P., Komosińska-Vassev K., Winsz-Szczotka K., Kuźnik-Trocha K., Olczyk K. Hyaluronan: structure, metabolism, functions, and role in wound healing. [Article in Polish]. Postepy Hig. Med. Dosw. 2008; 62: 651–659.
 
56.
Winsz-Szczotka K., Komosińska-Vassev K., Olczyk K. The metabolism of glycosaminoglycans in the course of Graves' disease. Postepy Hig. Med. Dosw. 2006; 60: 184–191.
 
57.
Kucia M. Właściwości i zastosowanie kwasu hialuronowego w kosmetologii i medycynie estetycznej. Kosmetol. Estet. 2017; 4(6): 329–335.
 
58.
Karamanos N.K., Piperigkou Z., Theocharis A.D., Watanabe H., Franchi M., Baud S. et al. Proteoglycan chemical diversity drives multifunctional cell regulation and therapeutics. Chem. Rev. 2018; 118(18): 9152–9232, doi: 10.1021/acs.chemrev.8b00354.
 
59.
Zhu Y., Kruglikov I.L., Akgul Y., Scherer P.E. Hyaluronan in adipogenesis, adipose tissue physiology and systemic metabolism. Matrix Biol. 2019; 78–79: 284–291, doi: 10.1016/j.matbio.2018.02.012.
 
60.
Tammi M.I., Day A.J., Turley E.A. Hyaluronan and homeostasis: a balancing act. J. Biol. Chem. 2002; 277(7): 4581–4584, doi: 10.1074/jbc.R100037200.
 
61.
Taylor K.R., Gallo R.L. Glycosaminoglycans and their proteoglycans: host‐associated molecular patterns for initiation and modulation of inflammation. FASEB J. 2006; 20(1): 9–22, doi: 10.1096/fj.05-4682rev.
 
62.
Musiał C. Role and application of glycosaminoglycans in trichology and cosmetology. [Article in Polish]. Aesth. Cosmetol. Med. 2021; 10(1): 33–37, doi: 10.52336/acm.2021.10.1.05.
 
63.
Kogan G., Soltés L., Stern R., Gemeiner P. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol. Lett. 2007; 29(1): 17–25, doi: 10.1007/s10529-006-9219-z.
 
64.
Sobczak-Żmuda K., Pasker B., Sosada M. Hyaluronic acid and its derivatives as a component of contemporary pharmaceuticals, cosmetic products and dietary supplements. [Article in Polish]. Farm. Pol. 2014; 70(1): 48–54.
 
65.
Salwowska N.M., Bebenek K.A., Żądło D.A., Wcisło-Dziadecka D.L. Physiochemical properties and application of hyaluronic acid: a systematic review. J. Cosmet. Dermatol. 2016; 15(4): 520–526, doi: 10.1111/jocd.12237.
 
66.
Korzeniowska K., Pawlaczyk M. The hyaluronic acid is not only a cosmetic. Farm. Współcz. 2014; 7: 72–76.
 
67.
Morla S. Glycosaminoglycans and glycosaminoglycan mimetics in cancer and inflammation. Int. J. Mol. Sci. 2019; 20(8): 1963, doi: 10.3390/ijms20081963.
 
68.
Volpi N., Schiller J., Stern R., Soltés L. Role, metabolism, chemical modifications and applications of hyaluronan. Curr. Med. Chem. 2009; 16(14): 1718–1745, doi: 10.2174/092986709788186138.
 
69.
Wan X., Chen Y., Geng F., Sheng Y., Wang F., Guo J. Narrative review of the mechanism of natural products and scar formation in wound repair. Ann. Transl. Med. 2022; 10(4): 236, doi: 10.21037/atm-21-7046.
 
70.
desJardins-Park H.E., Foster D.S., Longaker M.T. Fibroblasts and wound healing: an update. Regen. Med. 2018; 13(5): 491–495, doi: 10.2217/rme-2018-0073.
 
71.
Zomer H.D., Trentin A.G. Skin wound healing in humans and mice: Challenges in translational research. J. Dermatol. Sci. 2018; 90(1): 3–12, doi: 10.1016/j.jdermsci.2017.12.009.
 
72.
de Mendonça R.J., Coutinho-Netto J. Cellular aspects of wound healing. An. Bras. Dermatol. 2009; 84(3): 257–262, doi: 10.1590/s0365-05962009000300007.
 
73.
Werner S., Grose R. Regulation of wound healing by growth factors and cytokines. Physiol. Rev. 2003; 83(3): 835–870, doi: 10.1152/physrev.2003.83.3.835.
 
74.
Belvedere R., Bizzarro V., Parente L., Petrella F., Petrella A. Effects of Prisma® Skin dermal regeneration device containing glycosaminoglycans on human keratinocytes and fibroblasts. Cell Adh. Migr. 2018; 12(2): 168–183, doi: 10.1080/19336918.2017.1340137.
 
75.
Plichta J.K., Radek K.A. Sugar-coating wound repair: a review of FGF-10 and dermatan sulfate in wound healing and their potential application in burn wounds. J. Burn Care Res. 2012; 33(3): 299–310, doi: 10.1097/BCR.0b013e318240540a.
 
76.
Olczyk P., Komosinska-Vassev K., Winsz-Szczotka K., Stojko J., Klimek K., Kozma E.M. Propolis induces chondroitin/dermatan sulphate and hyaluronic acid accumulation in the skin of burned wound. Evid. Based Complement. Alternat. Med. 2013; 2013: 290675, doi: 10.1155/2013/290675.
 
77.
Deakin J.A., Blaum B.S., Gallagher J.T., Uhrín D., Lyon M. The binding properties of minimal oligosaccharides reveal a common heparan sulfate/dermatan sulfate-binding site in hepatocyte growth factor/scatter factor that can accommodate a wide variety of sulfation patterns. J. Biol. Chem. 2009; 284(10): 6311–6321, doi: 10.1074/jbc.M807671200.
 
78.
Bentley J.P. Rate of chondroitin sulfate formation in wound healing. Ann. Surg. 1967; 165(2): 186–191, doi: 10.1097/00000658-196702000-00004.
 
79.
Siméon A., Wegrowski Y., Bontemps Y., Maquart F.X. Expression of glycosaminoglycans and small proteoglycans in wounds: modulation by the tripeptide–copper complex glycyl-L-histidyl-L-lysine-Cu2+. J. Invest. Dermatol. 2000; 115(6): 962–968, doi: 10.1046/j.1523-1747.2000.00166.x.
 
80.
Ghatak S., Maytin E.V., Mack J.A., Hascall V.C., Atanelishvili I., Moreno Rodriguez R. et al. Roles of proteoglycans and glycosaminoglycans in wound healing and fibrosis. Int. J. Cell Biol. 2015; 2015: 834893, doi: 10.1155/2015/834893.
 
81.
Olczyk P., Komosińska-Vassev K., Winsz-Szczotka K., Koźma E.M., Wisowski G., Stojko J. et al. Propolis modulates vitronectin, laminin, and heparan sulfate/heparin expression during experimental burn healing. J. Zhejiang Univ. Sci. B 2012; 13(11): 932–941, doi: 10.1631/jzus.B1100310.
 
82.
Tong M., Zbinden M.M., Hekking I.J.M., Vermeij M., Barritault D., van Neck J.W. RGTA OTR 4120, a heparan sulfate proteoglycan mimetic, increases wound breaking strength and vasodilatory capability in healing rat full-thickness excisional wounds. Wound Repair Regen. 2008; 16(2): 294–299, doi: 10.1111/j.1524-475X.2008.00368.x.
 
83.
Xu D., Esko J.D. Demystifying heparan sulfate-protein interactions. Annu. Rev. Biochem. 2014; 83: 129–157, doi: 10.1146/annurev-biochem-060713-035314.
 
84.
Oksala O., Salo T., Tammi R., Häkkinen L., Jalkanen M., Inki P. et al. Expression of proteoglycans and hyaluronan during wound healing. J. Histochem. Cytochem. 1995; 43(2): 125–135, doi: 10.1177/43.2.7529785.
 
85.
Frenkel J.S. The role of hyaluronan in wound healing. Int. Wound J. 2014; 11(2): 159–163, doi: 10.1111/j.1742-481X.2012.01057.x.
 
86.
Weigel P.H., Frost S.J., LeBoeuf R.D., McGary C.T. The specific interaction between fibrin(ogen) and hyaluronan: possible consequences in haemostasis, inflammation and wound healing. Ciba Found. Symp. 1989; 143: 248–261, doi: 10.1002/9780470513774.ch15.
 
87.
Averbeck M., Gebhardt C.A., Voigt S., Beilharz S., Anderegg U., Termeer C.C. et al. Differential regulation of hyaluronan metabolism in the epidermal and dermal compartments of human skin by UVB irradiation. J. Invest. Dermatol. 2007; 127(3): 687–697, doi: 10.1038/sj.jid.5700614.
 
88.
Hamed S., Bennett C.L., Demiot C., Ullmann Y., Teot L., Desmoulière A. Erythropoietin, a novel repurposed drug: an innovative treatment for wound healing in patients with diabetes mellitus. Wound Repair Regen. 2014; 22(1): 23–33, doi: 10.1111/wrr.12135.
 
89.
Hamed S., Ullmann Y., Egozi D., Keren A., Daod E., Anis O. et al. Topical erythropoietin treatment accelerates the healing of cutaneous burn wounds in diabetic pigs through an aquaporin-3-dependent mechanism. Diabetes 2017; 66(8): 2254–2265, doi: 10.2337/db16-1205.
 
90.
Olczyk P., Wisowski G., Komosinska-Vassev K., Stojko J., Klimek K., Olczyk M. et al. Propolis modifies collagen types I and III accumulation in the matrix of burnt tissue. Evid. Based Complement. Alternat. Med. 2013; 2013: 423809, doi: 10.1155/2013/423809.
 
91.
Olczyk P., Komosinska-Vassev K., Wisowski G., Mencner L., Stojko J., Kozma E.M. Propolis modulates fibronectin expression in the matrix of thermal injury. Biomed Res. Int. 2014; 2014: 748101, doi: 10.1155/2014/748101.
 
92.
Hoekstra M.J., Hupkens P., Dutrieux R.P., Bosch M.M., Brans T.A., Kreis R.W. A comparative burn wound model in the New Yorkshire pig for the histopathological evaluation of local therapeutic regimens: silver sulfadiazine cream as a standard. Br. J. Plast. Surg. 1993; 46(7): 585–589, doi: 10.1016/0007-1226(93)90111-N.
 
 
CYTOWANIA (2):
1.
Utility of 1.5 Tesla MRI Scanner in the Management of Small Sample Sizes Driven from 3D Breast Cell Culture
Wiesław Guz, Rafał Podgórski, David Aebisher, Adrian Truszkiewicz, Agnieszka Machorowska-Pieniążek, Grzegorz Cieślar, Aleksandra Kawczyk-Krupka, Dorota Bartusik-Aebisher
International Journal of Molecular Sciences
 
2.
Introducing Ion Mobility Mass Spectrometry in Brain Glycosaminoglycomics: Application to Chondroitin/Dermatan Sulfate Octasaccharide Domains
Mirela Sarbu, Daniela G. Seidler, David E. Clemmer, Alina D. Zamfir
Journal of the American Society for Mass Spectrometry
 
eISSN:1734-025X
Journals System - logo
Scroll to top