Komórki macierzyste rąbka rogówki w procesie regeneracji nabłonka rogówki – aspekt kliniczny i molekularny
 
Więcej
Ukryj
1
Zakład Biologii Molekularnej, Katedra Biologii Molekularnej, Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej w Sosnowcu, Śląski Uniwersytet Medyczny w Katowicach
 
2
Oddział Okulistyki Dorosłych, Uniwersyteckie Centrum Kliniczne im. Prof. K. Gibińskiego Śląskiego Uniwersytetu Medycznego w Katowicach, Klinika Okulistyki, Katedra Okulistyki, Wydział Lekarski w Katowicach, Śląski Uniwersytet Medyczny w Katowicach
 
3
Klinika Okulistyki Katedry Okulistyki, Wydział Lekarski w Katowicach, Śląski Uniwersytet Medyczny w Katowicach
 
4
Katedra i Zakład Biochemii, Wydział Lekarski w Katowicach, Śląski Uniwersytet Medyczny w Katowicach
 
5
Stowarzyszenie Śląska Poliklinika Weterynaryjna
 
6
Uniwersyteckie Centrum Medycyny Weterynaryjnej UJ-UR w Krakowie
 
 
Autor do korespondencji
Bartosz Sikora   

Zakład Biologii Molekularnej, Katedra Biologii Molekularnej, Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej w Sosnowcu, Śląski Uniwersytet Medyczny w Katowicach, ul. Jedności 8, 41-200 Sosnowiec
 
 
Ann. Acad. Med. Siles. 2018;72:108-115
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Komórki macierzyste rąbka rogówki (limbal epithelial stem cells – LESC) zlokalizowane są na granicy rogówki i spojówki. Ich funkcja polega na odbudowie rogówki poprzez zastępowanie uszkodzonych lub niefunkcjonalnych komórek. W niniejszej pracy zawarto informacje dotyczące charakterystyki LESC, opisano sposoby ich identyfikacji z wykorzystaniem markerów powierzchniowych oraz cech morfologicznych. W pracy zawarto również informacje dotyczące hodowli komórek w warunkach in vitro jako potencjalnego źródła komórek wykorzystywanych w terapii oraz poruszono zagadnienia dysfunkcji LESC spowodowanych niedoborem komórek macierzystych wywołanych różnymi czynnikami, a także przedstawiono stosowane obecnie metody leczenia LSCD (limbal stem cell deficiency). Standardowe leczenie niedoboru komórek macierzystych rąbka rogówki polega na farmakoterapii oraz transplantacji autologicznego rąbka rogówki bogatego w komórki macierzyste. W przypadku całkowitego niedoboru LESC konieczne jest wykonanie przeszczepów allogenicznych.
REFERENCJE (73)
1.
Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663–676, doi: 10.1016/j.cell.2006.07.024.
 
2.
Maleki M., Ghanbarvand F., Reza Behvarz M., Ejtemaei M., Ghadirkhomi E. Comparison of mesenchymal stem cell markers in multiple human adult stem cells. Int. J. Stem Cells 2014; 7(2): 118–126, doi: 10.15283/ijsc.2014.7.2.118.
 
3.
Monaco E., Bionaz M., Rodriguez-Zas S., Hurley W.L., Wheeler M.B. Transcriptomics comparison between porcine adipose and bone marrow mesenchymal stem cells during in vitro osteogenic and adipogenic differentiation. PLoS One 2012; 7(3): e32481, doi: 10.1371/journal.pone.0032481.
 
4.
Dai R., Wang Z., Samanipour R., Koo K.I., Kim K. Adipose-Derived Stem Cells for Tissue Engineering and Regenerative Medicine Applications. Stem Cells Int. 2016; 2016: 6737345, doi: 10.1155/2016/6737345.
 
5.
Bionaz M., Monaco E., Wheeler M.B. Transcription Adaptation during In Vitro Adipogenesis and Osteogenesis of Porcine Mesenchymal Stem Cells: Dynamics of Pathways, Biological Processes, Up-Stream Regulators, and Gene Networks. PLoS One 2015; 10(9): e0137644, doi: 10.1371/journal.pone.0137644.
 
6.
Naderi N., Combellack E.J., Griffin M., Sedaghati T., Javed M., Findlay M.W., Wallace C.G., Mosahebi A., Butler P.E., Seifalian A.M., Whitaker I.S. The regenerative role of adipose-derived stem cells (ADSC) in plastic and reconstructive surgery. Int. Wound J. 2017; 14(1): 112–124, doi: 10.1111/iwj.12569.
 
7.
Otero-Viñas M., Falanga V. Mesenchymal Stem Cells in Chronic Wounds: The Spectrum from Basic to Advanced Therapy. Adv. Wound Care (New Rochelle) 2016; 5(4): 149–163, doi: 10.1089/wound.2015.0627.
 
8.
Saeed H., Ahsan M., Saleem Z., Iqtedar M., Islam M., Danish Z., Khan A.M. Mesenchymal stem cells (MSCs) as skeletal therapeutics – an update. J. Biomed. Sci. 2016; 23: 41, doi: 10.1186/s12929-016-0254-3.
 
9.
Zhilai Z., Biling M., Sujun Q., Chao D., Benchao S., Shuai H., Shun Y., Hui Z. Preconditioning in lowered oxygen enhances the therapeutic potential of human umbilical mesenchymal stem cells in a rat model of spinal cord injury. Brain Res. 2016; 1642: 426–435, doi: 10.1016/j.brainres.2016.04.025.
 
10.
Doulames V.M., Plant G.W. Induced Pluripotent Stem Cell Therapies for Cervical Spinal Cord Injury. Int. J. Mol. Sci. 2016; 17(4): 530, doi: 10.3390/ijms17040530.
 
11.
Sareen D., Saghizadeh M., Ornelas L., Winkler M.A., Narwani K., Saha-bian A., Funari V.A., Tang J., Spurka L., Punj V., Maguen E., Rabinowitz Y.S., Svendsen C.N., Ljubimov A.V. Differentiation of human limbal-derived induced pluripotent stem cells into limbal-like epithelium. Stem Cells Transl. Med. 2014; 3(9): 1002–1012, doi: 10.5966/sctm.2014-0076.
 
12.
Li F., Zhao S.Z. Mesenchymal stem cells: Potential role in corneal wound repair and transplantation. World J. Stem Cells 2014; 6(3): 296–304, doi: 10.4252/wjsc.v6.i3.296.
 
13.
Yoon J.J., Ismail S., Sherwin T. Limbal stem cells: Central concepts of corneal epithelial homeostasis. World J. Stem Cells 2014; 6(4): 391–403, doi: 10.4252/wjsc.v6.i4.391.
 
14.
Willoughby C.E., Ponzin D., Ferrari S., Lobo A., Landau K., Omidi Y. Anatomy and physiology of the human eye: effects of mucopolysaccharidoses disease on structure and function – a review. Clin. Exp. Ophthalmol. 2010; 38: 2–11, doi: 10.1111/j.1442-9071.2010.02363.x.
 
15.
Katikireddy K.R., Dana R., Jurkunas U.V. Differentiation potential of limbal fibroblasts and bone marrow mesenchymal stem cells to corneal epithelial cells. Stem Cells 2014; 32(3): 717–729, doi: 10.1002/stem.1541.
 
16.
West J.D., Dorà N.J., Collinson J.M. Evaluating alternative stem cell hypotheses for adult corneal epithelial maintenance. World J. Stem Cells 2015; 7(2): 281–299, doi: 10.4252/wjsc.v7.i2.281.
 
17.
Acar U., Pinarli F.A., Acar D.E., Beyazyildiz E., Sobaci G., Ozgermen B.B., Sonmez A.A., Delibasi T. Effect of allogeneic limbal mesenchymal stem cell therapy in corneal healing: role of administration route. Ophthalmic Res. 2015; 53(2): 82–89, doi: 10.1159/000368659.
 
18.
López-Paniagua M., Nieto-Miguel T., de la Mata A., Dziasko M., Ga-lindo S., Rey E., Herreras J.M., Corrales R.M., Daniels J.T., Calonge M. Comparison of functional limbal epithelial stem cell isolation methods. Exp. Eye Res. 2016; 146: 83–94, doi: 10.1016/j.exer.2015.12.002.
 
19.
Buschke W., Friedenwald J.S., Fleischmann W. Studies on the mitotic activity of the corneal epithelium. Methods. The effects of colchicine, ether, cocaine, and ephedrine. Bull. Johns Hopkins Hosp. 1943; 73: 143–167.
 
20.
Veréb Z., Albert R., Póliska S., Olstad O.K., Akhtar S., Moe M.C., Petrovski G. Comparison of upstream regulators in human ex vivo cultured cornea limbal epithelial stem cells and differentiated corneal epithelial cells. BMC Genomics 2013; 14: 900, doi: 10.1186/1471-2164-14-900.
 
21.
Tseng S.C., He H., Zhang S., Chen S.Y. Niche Regulation of Limbal Epithelial Stem Cells: Relationship between Inflammation and Regeneration. Ocul. Surf. 2016; 14(2): 100–112, doi: 10.1016/j.jtos.2015.12.002.
 
22.
Mikhailova A., Ilmarinen T., Ratnayake A., Petrovski G., Uusitalo H., Skottman H., Rafat M. Human pluripotent stem cell-derived limbal epithelial stem cells on bioengineered matrices for corneal reconstruction. Exp. Eye Res. 2016; 146: 26–34, doi: 10.1016/j.exer.2015.11.021.
 
23.
Chen Z., de Paiva C.S., Luo L., Kretzer F.L., Pflugfelder S.C., Li D.Q. Characterization of putative stem cell phenotype in human limbal epithelia. Stem Cells 2004; 22(3): 355–366, doi: 10.1634/stemcells.22-3-355.
 
24.
Rama P., Matuska S., Paganoni G., Spinelli A., De Luca M., Pellegrini G. Limbal stem-cell therapy and long-term corneal regeneration. N. Engl. J. Med. 2010; 363(2): 147–155, doi: 10.1056/NEJMoa0905955.
 
25.
Pellegrini G., Rama P., Matuska S., Lambiase A., Bonini S., Pocobelli A., Colabelli R.G., Spadea L., Fasciani R., Balestrazzi E. et al. Biological parameters determining the clinical outcome of autologous cultures of limbal stem cells. Regen. Med. 2013; 8(5): 553–567, doi: 10.2217/rme.13.43.
 
26.
Harkin D.G., Foyn L., Bray L.J., Sutherland A.J., Li F.J, Cronin B.G. Concise reviews: can mesenchymal stromal cells differentiate into corneal cells? A systematic review of published data. Stem Cells 2015; 33(3): 785–791, doi: 10.1002/stem.1895.
 
27.
Loureiro R.R., Cristovam PC., Martins CM., Covre J.L., Sobrinho J.A., Ricardo J.R., Hazarbassanov R.M., Höfling-Lima A.L., Belfort R. Jr, Nishi M., Gomes J.Á. Comparison of culture media for ex vivo cultivation of limbal epithelial progenitor cells. Mol. Vis. 2013; 19: 69–77.
 
28.
Perrella G., Scott C.A., Spelat R., Brusini P., D’Aurizio F., De Pol I., Dua H.S. Cultured Human Keratocytes from the Limbus and Cornea Both Express Epithelial Cytokeratin 3: Possible Mesenchymal-Epithelial Transition. Int. J. Ophthalmic Pathol. 2012; 1(2): 1–7, doi: 10.4172/2324-8599.1000101.
 
29.
Colabelli Gisoldi R.A., Pocobelli A., Villani C.M., Amato D., Pellegrini G. Evaluation of molecular markers in corneal regeneration by means of autologous cultures of limbal cells and keratoplasty. Cornea 2010; 29(7): 715–722, doi: 10.1097/ICO.0b013e3181c91ac4.
 
30.
Mikhailova A., Jylhä A., Rieck J., Nättinen J., Ilmarinen T., Veréb Z., Aapola U., Beuerman R., Petrovski G., Uusitalo H., Skottman H. Compara-tive proteomics reveals human pluripotent stem cell-derived limbal epithelial stem cells are similar to native ocular surface epithelial cells. Sci. Rep. 2015; 5: 14684, doi: 10.1038/srep14684.
 
31.
Szabó D.J., Noer A., Nagymihály R., Josifovska N., Andjelic S., Veréb Z., Facskó A., Moe M.C., Petrovski G. Long-Term Cultures of Human Cornea Limbal Explants Form 3D Structures Ex Vivo – Implications for Tissue Engineering and Clinical Applications. PLoS One 2015; 10(11): e0143053, doi: 10.1371/journal.pone.0143053.
 
32.
Fan T., Ma X., Zhao J., Wen Q., Hu X., Yu H., Shi W. Transplantation of tissue-engineered human corneal endothelium in cat models. Mol. Vis. 2013; 19: 400–407.
 
33.
Nishida K., Kinoshita S., Ohashi Y., Kuwayama Y., Yamamoto S. Ocular surface abnormalities in aniridia. Am. J. Ophthalmol. 1995; 120(3): 368–375.
 
34.
Skeens H.M., Brooks B.P, Holland E.J. Congenital aniridia variant: minimally abnormal irides with severe limbal stem cell deficiency. Ophthal-mology 2011; 118(7): 1260–1264, doi: 10.1016/j.ophtha.2010.11.021.
 
35.
Hatch K.M., Dana R. The structure and function of the limbal stem cell and the disease states associated with limbal stem cell deficiency. Int. Ophthalmol. Clin. 2009; 49(1): 43–52, doi: 10.1097/IIO.0b013e3181924e54.
 
36.
Felipe A.F., Abazari A., Hammersmith K.M., Rapuano C.J., Nagra P.K., Peiro B.M. Corneal changes in ectrodactyly-ectodermal dysplasia-cleft lip and palate syndrome: case series and literature review. Int. Ophthalmol. 2012; 32(5): 475–480, doi: 10.1007/s10792-012-9585-6.
 
37.
Di Iorio E., Kaye S.B., Ponzin D., Barbaro V., Ferrari S., Böhm E., Nardiello P., Castaldo G., McGrath J.A., Willoughby C.E. Limbal stem cell deficiency and ocular phenotype in ectrodactyly-ectodermal dysplasia-clefting syndrome caused by p63 mutations. Ophthalmology 2012; 119(1): 74–83, doi: 10.1016/j.ophtha.2011.06.044.
 
38.
Messmer E.M., Kenyon K.R., Rittinger O., Janecke A.R., Kampik A. Ocular manifestations of keratitis-ichthyosis-deafness (KID) syndrome. Ophthalmology 2005; 112(2): e1–6, doi: 10.1016/j.ophtha.2004.07.034.
 
39.
Fernandes M., Sangwan V.S., Vemuganti G.K. Limbal stem cell defi-ciency and xeroderma pigmentosum: a case report. Eye (Lond.) 2004; 18(7): 741–743, doi: 10.1038/sj.eye.6700717.
 
40.
Lim P., Fuchsluger T.A., Jurkunas U.V. Limbal stem cell deficiency and corneal neovascularization. Semin. Ophthalmol. 2009; 24(3): 139–148, doi: 10.1080/08820530902801478.
 
41.
Strungaru M.H., Mah D., Chan C.C. Focal limbal stem cell deficiency in Turner syndrome: report of two patients and review of the literature. Cornea 2014; 33(2): 207–209, doi: 10.1097/ICO.0000000000000040.
 
42.
Aslan D., Ozdek S., Camurdan O., Bideci A., Cinaz P. Dyskeratosis con-genita with corneal limbal insufficiency. Pediatr. Blood Cancer 2009; 53(1): 95–97, doi: 10.1002/pbc.21960.
 
43.
Aslan D., Akata R.F., Holme H., Vulliamy T., Dokal I. Limbal stem cell de-ficiency in patients with inherited stem cell disorder of dyskeratosis congenita. Int. Ophthalmol. 2012; 32(6): 615–622, doi: 10.1007/s10792-012-9611-8.
 
44.
Aslan D., Akata R.F. Dyskeratosis congenita and limbal stem cell defi-ciency. Exp. Eye Res. 2010; 90(3): 472–473, doi: 10.1016/j.exer.2009.12.008.
 
45.
Puangsricharern V., Tseng S.C. Cytologic evidence of corneal diseases with limbal stem cell deficiency. Ophthalmology 1995; 102(10): 1476–1485, doi: 10.1016/S0161-6420(95)30842-1.
 
46.
Mohammadpour M., Javadi M.A. Keratitis associated with multiple endocrine deficiency. Cornea 2006; 25(1): 112–114, doi: 10.1097/01.ico.0000179928.20522.3a.
 
47.
Dua H.S., Saini J.S., Azuara-Blanco A., Gupta P. Limbal stem cell deficiency: concept, aetiology, clinical presentation, diagnosis and management. Indian J. Ophthalmol. 2000; 48(2): 83–92.
 
48.
Sridhar M.S., Vemuganti G.K., Bansal A.K., Rao G.N. Impression cytology-proven corneal stem cell deficiency in patients after surgeries involving the limbus. Cornea 2001; 20(2): 145–148.
 
49.
Jeng B.H., Halfpenny C.P., Meisler D.M., Stock E.L. Management of focal limbal stem cell deficiency associated with soft contact lens wear. Cornea 2011; 30(1): 18–23, doi: 10.1097/ICO.0b013e3181e2d0f5.
 
50.
Chan C.C., Holland E.J. Severe limbal stem cell deficiency from contact lens wear: patient clinical features. Am. J. Ophthalmol. 2013; 155(3): 544–549.e2, doi: 10.1016/j.ajo.2012.09.013.
 
51.
Tsai R.J., Li L.M., Chen J.K. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N. Engl. J. Med. 2000; 343(2): 86–93, doi: 10.1056/NEJM200007133430202.
 
52.
Meller D., Fuchsluger T., Pauklin M., Steuhl K.P. Ocular surface reconstruction in graft-versus-host disease with HLA-identical living-related allogeneic cultivated limbal epithelium after hematopoietic stem cell transplantation from the same donor. Cornea 2009; 28(2): 233–236, doi: 10.1097/ICO.0b013e31818526a6.
 
53.
Sangwan V.S., Jain V., Vemuganti G.K., Murthy S.I. Vernal keratocon-junctivitis with limbal stem cell deficiency. Cornea 2011; 30(5): 491–496, doi: 10.1097/ICO.0b013e3181cbf9d3.
 
54.
Dua H.S., Azuara-Blanco A. Allo-limbal transplantation in patients with limbal stem cell deficiency. Br. J. Ophthalmol. 1999; 83(4): 414–419, doi: 10.1136/bjo.83.4.414.
 
55.
Uchino Y., Goto E., Takano Y., Dogru M., Shinozaki N., Shimmura S., Yagi Y., Tsubota K., Shimazaki J. Long-standing bullous keratopathy is associated with peripheral conjunctivalization and limbal deficiency. Ophthal-mology 2006; 113(7): 1098–1101, doi: 10.1016/j.ophtha.2006.01.034.
 
56.
Tseng S.C. Staging of conjunctival squamous metaplasia by impression cytology. Ophthalmology 1985; 92(6): 728–733, doi: 10.1016/S0161-6420(85)33967-2.
 
57.
Sangwan V.S. Limbal stem cells in health and disease. Biosci. Rep. 2001; 21(4): 385–405, doi: 10.1023/A:1017935624867.
 
58.
Ding X., Bishop R.J., Herzlich A.A., Patel M., Chan C.C. Limbal stem cell deficiency arising from systemic chemotherapy with hydroxycarbamide. Cornea 2009; 28(2): 221–223, doi: 10.1097/ICO.0b013e318183a3bd.
 
59.
Lichtinger A., Pe'er J., Frucht-Pery J., Solomon A. Limbal stem cell deficiency after topical mitomycin C therapy for primary acquired melanosis with atypia. Ophthalmology 2010; 117(3): 431–437, doi: 10.1016/j.ophtha.2009.07.032.
 
60.
Dudney B.W., Malecha M.A. Limbal stem cell deficiency following topical mitomycin C treatment of conjunctival-corneal intraepithelial neoplasia. Am. J. Ophthalmol. 2004; 137(5): 950–951, doi: 10.1016/j.ajo.2003.10.048.
 
61.
Pires R.T., Chokshi A., Tseng S.C. Amniotic membrane transplantation or conjunctival limbal autograft for limbal stem cell deficiency induced by 5-fluorouracil in glaucoma surgeries. Cornea 2000; 19(3): 284–287.
 
62.
Kim B.Y., Riaz K.M., Bakhtiari P., Chan C.C., Welder J.D., Holland E.J., Basti S., Djalilian A.R. Medically reversible limbal stem cell disease: clinical features and management strategies. Ophthalmology 2014; 121(10): 2053–2058, doi: 10.1016/j.ophtha.2014.04.025.
 
63.
Sejpal K., Bakhtiari P., Deng S.X. Presentation, diagnosis and manage-ment of limbal stem cell deficiency. Middle East Afr. J. Ophthalmol. 2013; 20(1): 5–10, doi: 10.4103/0974-9233.106381.
 
64.
Dua H.S., Joseph A., Shanmuganathan V.A., Jones R.E. Stem cell differentiation and the effects of deficiency. Eye (Lond.) 2003; 17(8): 877–885, doi: 10.1038/sj.eye.6700573.
 
65.
Akinci M.A., Turner H., Taveras M., Wolosin J.M. Differential gene expression in the pig limbal side population: implications for stem cell cycling, replication, and survival. Invest. Ophthalmol. Vis. Sci. 2009; 50(12): 5630–5638, doi: 10.1167/iovs.09-3791.
 
66.
Ahmad S. Concise review: limbal stem cell deficiency, dysfunction, and distress. Stem Cells Transl. Med. 2012; 1(2): 110–115, doi: 10.5966/sctm.2011-0037.
 
67.
Fatima A., Iftekhar G., Sangwan V.S., Vemuganti G.K. Ocular surface changes in limbal stem cell deficiency caused by chemical injury: a histologic study of excised pannus from recipients of cultured corneal epithelium. Eye (Lond.) 2008; 22(9): 1161–1167, doi: 10.1038/sj.eye.6702895.
 
68.
Miri A., Alomar T., Nubile M., Al-Aqaba M., Lanzini M., Fares U., Said D.G., Lowe J., Dua H.S. In vivo confocal microscopic findings in patients with limbal stem cell deficiency. Br. J. Ophthalmol. 2012; 96(4): 523–529, doi: 10.1136/bjophthalmol-2011-300551.
 
69.
Shortt A.J., Secker G.A., Rajan M.S., Meligonis G., Dart J.K., Tuft S.J., Daniels J.T. Ex vivo expansion and transplantation of limbal epithelial stem cells. Ophthalmology 2008; 115(11): 1989–1997, doi: 10.1016/j.ophtha.2008.04.039.
 
70.
van Essen T.H., Roelen D.L., Williams K.A., Jager M.J. Matching for Human Leukocyte Antigens (HLA) in corneal transplantation – to do or not to do. Prog. Retin. Eye Res. 2015; 46: 84–110, doi: 10.1016/j.preteyeres.2015.01.001.
 
71.
Choi H.J., Lee J.J., Kim D.H., Kim M.K., Lee H.J., Ko A.Y., Kang H.J., Park C., Wee W.R. Blockade of CD40-CD154 costimulatory pathway promotes long-term survival of full-thickness porcine corneal grafts in nonhuman primates: clinically applicable xenocorneal transplantation. Am. J. Transplant. 2015; 15(3): 628–641, doi: 10.1111/ajt.13057.
 
72.
Cohen D., Miyagawa Y., Mehra R., Lee W., Isse K., Long C., Ayares D.L., Cooper D.K., Hara H. Distribution of non-gal antigens in pig cornea: relevance to corneal xenotransplantation. Cornea 2014; 33(4): 390–397, doi: 10.1097/ICO.0000000000000069.
 
73.
Smorąg Z., Słomski R., Jura J., Lipiński D., Skrzyszowska M. Transgeniczne świnie jako dawcy tkanek i narządów do transplantacji u ludzi. Przegląd Hodowlany 2011; 11: 1–4.
 
eISSN:1734-025X
Journals System - logo
Scroll to top