Znaczenie cynku dla organizmu ludzkiego w aspekcie suplementacji tego pierwiastka
 
Więcej
Ukryj
1
Katedra i Zakład Toksykologii, Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej w Sosnowcu, Śląski Uniwersytet Medyczny w Katowicach
 
 
Autor do korespondencji
Danuta Wiechuła   

Katedra i Zakład Toksykologii, Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej w Sosnowcu, Śląski Uniwersytet Medyczny w Katowicach, Jagiellońska 4, 41-200 Sosnowiec, Polska
 
 
Ann. Acad. Med. Siles. 2017;71:314-325
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Cynk jest jednym z głównych pierwiastków śladowych organizmu, spełniającym rolę katalityczną, strukturalną i regulacyjną. Jest niezbędny do podziałów komórkowych i różnicowania powstających komórek, uczestniczy w homeostazie, reakcjach odpornościowych, w apoptozie i starzeniu się organizmu. Cynk jest również składnikiem wielu enzymów i białek oraz odgrywa ważną rolę w spermatogenezie i syntezie hormonów steroidowych. Niedostateczna podaż cynku dotyczy ok. 30% ludności świata. Oprócz niedostatecznej podaży z pokarmem, przyczyną niedoboru cynku mogą być niektóre schorzenia oraz nieprawidłowe wchłanianie tego pierwiastka. Schorzenia, wynikające z niedoboru tego pierwiastka, mogą występować zarówno u dzieci, jak i dorosłych. Suplementacja diety preparatami cynku w wielu przypadkach jest niezbędna, jednak samodzielne jego stosowanie, bez stwierdzonego niedoboru i bez konsultacji z lekarzem, może doprowadzić do występowania działań niepożądanych w wyniku jego nadużywania, w tym także niebezpiecznych interakcji z innymi stosowanymi preparatami i żywnością.
REFERENCJE (54)
1.
Scherz H., Kirchhoff E. Trace elements in foods: Zinc contents of raw foods – A comparison of data originating from different geographical regions of the world. J. Food Compos. Anal. 2006; 19(5): 420–433.
 
2.
Plum L.M., Rink L., Haase H. The essential toxin: impact of zinc on human health. Int. J. Environ. Res. Public Health 2010; 7(4): 1342–1365.
 
3.
Wawer I. Suplementy diety dla Ciebie. Wydawnictwo Wektor. Warszawa 2009.
 
4.
Fukada T., Yamasaki S., Nishida K., Murakami M., Hirano T. Zinc homeostasis and signaling in health and diseases: Zinc signaling. J. Biol. Inorg. Chem. 2011; 16(7): 1123–1134.
 
5.
Stefanidou M., Maravelias C., Dona A., Spiliopoulou C. Zinc: a multi-purpose trace element. Arch. Toxicol. 2006; 80(1): 1–9.
 
6.
Fraga C.G. Relevance, essentiality and toxicity of trace elements in human health. Mol. Aspects Med. 2005; 26(4–5): 235–244.
 
7.
Jarosz M. Normy żywienia dla populacji polskiej – nowelizacja. Instytut Żywności i Żywienia. Warszawa 2012.
 
8.
U.S. Environmental Protection Agency. Toxicological review of zinc and compounds. 2005. http://www.epa.gov/iris/toxrev... [dostęp 30.01.2016].
 
9.
Sandstead H.H., Freeland-Graves J.H. Dietary phytate, zinc and hidden zinc deficiency. J. Trace Elem. Med. Biol. 2014; 28: 414–417.
 
10.
Kruse-Jarres J.D. Pathogenesis and symptoms of zinc deficiency. Am. Clin. Lab. 2001; 20(3): 17–22.
 
11.
Geiser J., De Lisle R.C., Andrews G.K. The zinc transporter Zip5 (Slc39a5) regulates intestinal zinc excretion and protects the pancreas against zinc toxicity. PLoS One 2013; 8(11): e82149.
 
12.
Sakulsak N. Metallothionein: an overview on its metal homeostatic regulation in mammals. Int. J. Morphol. 2012; 30(3): 1007–1012.
 
13.
Ruttkay-Nedecky B., Nejdl L., Gumulec J., Zitka O., Masarik M., Eckschlager T., Stiborova M., Adam V., Kizek R. The role of metallothionein in oxidative stress. Int. J. Mol. Sci. 2013; 14(3): 6044–6066.
 
14.
Coleman J.E. Zinc enzymes. Curr. Opin. Chem. Biol. 1998; 2(2): 222–234.
 
15.
Cruz K.J.C., Oliveira A.R.S., Marreiro D.N. Antioxidant role of zinc in diabetes mellitus. World J. Diabetes 2015; 6(2): 333–337.
 
16.
Dreosti I.E. Zinc and the gene. Mutat. Res. 2001; 475(1–2): 161–167.
 
17.
Urnov F.D., Rebar E.J., Holmes M.C., Zhang H.S., Gregory P.D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 2010; 11(9): 636–646.
 
18.
Powell S.R. The antioxidant properties of zinc. J. Nutr. 2000; 130(5S Suppl): 1447S–1454S.
 
19.
Prasad A.S. Zinc: role in immunity, oxidative stress and chronic inflammation. Curr. Opin. Clin. Nutr. Metab. Care 2009; 12(6): 646–652.
 
20.
Rink L., Haase H. Zinc homeostasis and immunity. Trends Immunol. 2007; 28(1): 1–4.
 
21.
Myers S.A. Zinc transporters and zinc signaling: new insights into their role in type 2 diabetes. Int. J. Endocrinol. 2015: 167503, doi: 10.1155/2015/167503.
 
22.
Tubek S., Grzanka P., Tubek I. Role of zinc in hemostasis: a review. Biol. Trace Elem. Res. 2008; 121(1): 1–8.
 
23.
Vu T.T., Fredenburgh J.C., Weitz J.I. Zinc: an important cofactor in haemostasis and thrombosis. Thromb. Haemost. 2013; 109(3): 421–430.
 
24.
Grahn B.H., Paterson P.G., Gottschall-Pass K.T., Zhang Z. Zinc and the eye. J. Am. Coll. Nutr. 2001; 20(Suppl 2): 106–118.
 
25.
Ripps H., Chappell R.L. Review: Zinc's functional significance in the vertebrate retina. Mol. Vis. 2014; 20: 1067–1074.
 
26.
Siwek M., Szewczyk B., Dudek D., Styczeń K., Sowa-Kućma M., Młyniec K., Siwek A., Witkowski L., Pochwat B., Nowak G. Zinc as a marker of affective disorders. Pharmacol. Rep. 2013; 65(6): 1512–1518.
 
27.
Nowak G., Szewczyk B., Pilc A. Zinc and depression. An update. Pharmacol. Rep. 2005; 57(6): 713–718.
 
28.
Tyszka-Czochara M., Grzywacz A., Gdula-Argasińska J., Librowski T., Wiliński B., Opoka W. The role of zinc in the pathogenesis and treatment of central nervous system (CNS) diseases. Implications of zinc homeostasis for proper CNS function. Acta Pol. Pharm. 2014; 71(3): 369–377.
 
29.
Swardfager W., Herrmann N., Mazereeuw G., Goldberger K., Harimoto T., Lanctôt K.L. Zinc in depression: A meta-analysis. Biol. Psychiatry 2013; 74(12): 872–878.
 
30.
Omu A.E., Al-Azemi M.K., Al-Maghrebi M., Mathew C.T., Omu F.E., Kehinde E.O., Anim J.T., Oriowo M.A., Memon A. Molecular basis for the effects of zinc deficiency on spermatogenesis: An experimental study in the Sprague-dawley rat model. Indian J. Urol. 2015; 31(1): 57–64.
 
31.
Merrells K.J., Blewett H., Jamieson J.A., Taylor C.G., Suh M. Relationship between abnormal sperm morphology induced by dietary zinc deficiency and lipid composition in testes of growing rats. Br. J. Nutr. 2009; 102: 226–232.
 
32.
Yanagisawa H. Zinc deficiency and clinical practice. JMAJ 2004; 47(8): 359–364.
 
33.
Chaffee B.W., King J.C. Effect of zinc supplementation on pregnancy and infant outcomes: a systematic review. Paediatr. Perinat. Epidemiol. 2012; 26(Suppl. 1): 118–137.
 
34.
Cabrera A.J.R. Zinc, aging, and immunosenescence: an overview. Pathobiol. Aging Age Relat. Dis. 2015; 5: 25592, doi: 10.3402/pba.v5.25592.
 
35.
Oberleas D., Harland B.F. Treatment of zinc deficiency without zinc fortification. J. Zhejiang Univ. Sci. B 2008; 9(3): 192–196.
 
36.
Solomons N.W. Competitive interaction of iron and zinc in the diet: consequences for human nutrition. J. Nutr. 1986; 116(6): 927–935.
 
37.
Cousins R.J. Gastrointestinal factors influencing zinc absorption and homeostasis. Int. J. Vitam. Nutr. Res. 2010; 80(4-5): 243–248.
 
38.
Duncan A., Yacoubian C., Watson N., Morrison I. The risk of copper deficiency in patients prescribed zinc supplements. J. Clin. Pathol. 2015; 68(9): 723–725.
 
39.
Choi S.J., Choy J.H. Biokinetics of zinc oxide nanoparticles: toxicoki-netics, biological fates, and protein interaction. Int. J. Nanomedicine 2014; 9(Suppl 2): 261–269.
 
40.
Baek M., Chung H.E., Yu J., Lee JA, Kim TH, Oh JM, Lee WJ, Paek SM, Lee JK, Jeong J, Choy JH, Choi SJ. Pharmacokinetics, tissue distribu-tion, and excretion of zinc oxide nanoparticles. Int. J. Nanomedicine 2012; 7: 3081–3097.
 
41.
Suzuki Y., Tada-Oikawa S., Ichihara G., Yabata M., Izuoka K., Suzuki M., Sakai K., Ichihara S. Zinc oxide nanoparticles induce migration and adhesion of monocytes to endothelial cells and accelerate foam cell formation. Toxicol. Appl. Pharmacol. 2014; 278(1): 16–25.
 
42.
Gęsiak K., Kondrat M., Stefańczyk-Kaczmarzyk J. Prawo suplementów diety. Wolters Kluwer SA. Warszawa 2012, 11–16.
 
43.
Ustawa z dnia 25 sierpnia 2006 r. o bezpieczeństwie żywności i żywienia. Dz.U. 2015, poz. 594.
 
44.
Rozporządzenie Ministra Zdrowia z dnia 9 października 2007 r. w sprawie składu oraz oznakowania suplementów diety z późn. zm. Dz.U. 2014, poz. 453.
 
45.
Rozporządzenie Ministra Rolnictwa i Rozwoju Wsi z dnia 23 grudnia 2014 r. w sprawie znakowania poszczególnych rodzajów środków spożywczych. Dz.U. 2015, poz. 29.
 
46.
Jarosz M. Suplementy diety a zdrowie. Wydawnictwo Lekarskie PZWL, Warszawa 2011.
 
47.
Islam M.N., Chowdhury M.A., Siddika M., Qurishi S.B., Bhuiyan M.K., Hoque M.M., Akhter S. Effect of oral zinc supplementation on the growth of preterm infants. Indian. Pediatrics 2010; 47(10): 845–849.
 
48.
Abrams S.A. Zinc for preterm infants: Who needs it and how much is needed? Am. J. Clin. Nutr. 2013; 98(6): 1373–1374.
 
49.
Liberato S.C., Singh G., Mulholland K. Zinc supplementation in young children: A review of the literature focusing on diarrhoea prevention and treatment. Clin. Nutr. 2015; 34(2): 181–188.
 
50.
Lazzerini M., Ronfani L. Oral zinc for treating diarrhoea in children. Cochrane Database Syst. Rev. 2012; 6: CD005436.
 
51.
Lamberti L.M., Walker C.L., Chan K.Y., Jian W.Y., Black R.E. Oral zinc supplementation for the treatment of acute diarrhea in children: A systematic review and meta-analysis. Nutrients 2013; 5(11): 4715–4740.
 
52.
de Moura J.E., de Moura E.N., Alves C.X., Vale S.H., Dantas M.M., Silva Ade A., Almeida Md., Leite L.D., Brandão-Neto J. Oral zinc supplementation may improve cognitive function in schoolchildren. Biol. Trace Elem. Res. 2013; 155(1): 23–28.
 
53.
Ranjbar E., Kasaei M.S., Mohammad-Shirazi M., Nasrollahzadeh J., Rashidkhani B., Shams J., Mostafavi S.A., Mohammadi M.R. Effects of zinc supplementation in patients with major depression: A randomized clinical trial. Iran J. Psychiatry 2013; 8(2): 73–79.
 
54.
Nuttall J.R., Oteiza P.I. Zinc and the aging brain. Genes Nutr. 2014; 9(1): 379.
 
 
CYTOWANIA (7):
1.
Nicotinamide as a Catalyst for Zn2+ Electroreduction in Acetate Buffer
Jolanta Nieszporek
Electrocatalysis
 
2.
A Review of Microwave Synthesis of Zinc Oxide Nanomaterials: Reactants, Process Parameters and Morphologies
Jacek Wojnarowicz, Tadeusz Chudoba, Witold Lojkowski
Nanomaterials
 
3.
The combined effects of Cr(III) propionate complex supplementation and iron excess on copper and zinc status in rats
Halina Staniek
Journal of Trace Elements in Medicine and Biology
 
4.
Heavy metals in leathers, artificial leathers, and textiles in the context of quality and safety of use
Elżbieta Bielak, Ewa Marcinkowska
Scientific Reports
 
5.
The Role of Zinc in Bone Tissue Health and Regeneration—a Review
Magda Molenda, Joanna Kolmas
Biological Trace Element Research
 
6.
Evaluation of the Concentration of Selected Elements in the Serum of Patients with Degenerative Stenosis of the Lumbosacral Spine
Dawid Sobański, Rafał Staszkiewicz, Michał Filipowicz, Mateusz Holiński, Maciej Jędrocha, Marek Migdał, Beniamin Oskar Grabarek
Biological Trace Element Research
 
7.
Fluorescent Sensor Based on 1H-Pyrazolo[3,4-b]quinoline Derivative for Detecting Zn2+ Cations
Anna Kolbus, Tomasz Uchacz, Andrzej Danel, Katarzyna Gałczyńska, Paulina Moskwa, Przemysław Kolek
Molecules
 
eISSN:1734-025X
Journals System - logo
Scroll to top