Ekspresja receptora oreksynowego-1 w regionach neurogenezy dorosłych gryzoni: strefie podziarnistej oraz wyniosłości pośrodkowej
Więcej
Ukryj
1
Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
Autor do korespondencji
Artur Pałasz
Zakład Histologii, Wydział Nauk Medycznych w Katowicach ŚUM, ul. Medyków 18, 40-752 Katowice
Ann. Acad. Med. Siles. 2025;79:308-315
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Wstęp:
Sygnalizacja oreksynergiczna odgrywa kluczową rolę w regulacji funkcji autonomicznych i poznawczych, w tym cyklu snu i czuwania oraz przyjmowania pokarmu. Receptor oreksyny-1 (orexin receptor-1 – OX1R), pierwszoplanowy element tego układu, może również wpływać na neurogenezę w mózgu dojrzałym. W przedstawionym badaniu zbadano ekspresję OX1R zarówno w klasycznych (hipokamp), jak i nieklasycznych (podwzgórze) regionach neurogennych mózgu dorosłych gryzoni (szczurów i myszy).
Materiał i metody:
Mózgi dorosłych gryzoni utrwalono, zatopiono w parafinie i skrojono w płaszczyźnie poprzecznej. Badania immunohistochemiczne i fluorescencyjne wykonano z wykorzystaniem pierwszorzędowych przeciwciał selektywnych względem OX1R, DCX i TUC-4, a następnie przeciwciał drugorzędowych sprzężonych z fluorochromami lub w reakcji diaminobenzydyny. W celu zapewnienia swoistości uwzględniono kontrole negatywne.
Wyniki:
Komórki OX1R-pozytywne zlokalizowano głównie w strefie podziarnistej (subgranular zone – SGZ) zakrętu zębatego, β2-tanycyty wyniosłości pośrodkowej wykazywały jednorodną ekspresję OX1R zarówno w ich ciałach komórkowych, jak i w wypustkach okołonaczyniowych. Zaobserwowano istotne zróżnicowanie morfologiczne neuronów OX1R-pozytywnych między badanymi gatunkami gryzoni – u myszy dominowały perykariony różnokształtne, natomiast u szczurów komórki wydłużone i wielobiegunowe.
Wnioski:
Badanie to po raz pierwszy ujawniło specyficzną dla regionu ekspresję OX1R w SGZ hipokampa oraz w β2-tanycytach wyniosłości pośrodkowej podwzgórza. Wyniki sugerują potencjalną rolę sygnalizacji oreksynowej w regulacji neurogenezy w mózgu dojrzałym.
REFERENCJE (56)
1.
Gonçalves J.T., Schafer S.T., Gage F.H. Adult neurogenesis in the hippocampus: from stem cells to behavior. Cell 2016; 167(4): 897–914, doi: 10.1016/j.cell.2016.10.021.
2.
Rolando C., Taylor V. Neural stem cell of the hippocampus: development, physiology regulation, and dysfunction in disease. Curr. Top. Dev. Biol. 2014; 107: 183–206, doi: 10.1016/B978-0-12-416022-4.00007-X.
3.
Kokoeva M.V., Yin H., Flier J.S. Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science 2005; 310(5748): 679–683, doi: 10.1126/science.1115360.
4.
Pierce A.A., Xu A.W. De novo neurogenesis in adult hypothalamus as a compensatory mechanism to regulate energy balance. J. Neurosci. 2010; 30(2): 723–730, doi: 10.1523/JNEUROSCI.2479-09.2010.
5.
Goodman T., Hajihosseini M.K. Hypothalamic tanycytes-masters and servants of metabolic, neuroendocrine, and neurogenic functions. Front Neurosci. 2015; 9: 387, doi: 10.3389/fnins.2015.00387.
6.
Mathew T.C. Regional analysis of the ependyma of the third ventricle of rat by light and electron microscopy. Anat. Histol. Embryol. 2008; 37(1): 9–18, doi: 10.1111/j.1439-0264.2007.00786.x.
7.
Prevot V., Dehouck B., Sharif A., Ciofi P., Giacobini P., Clasadonte J. The versatile tanycyte: a hypothalamic integrator of reproduction and energy metabolism. Endocr. Rev. 2018; 39(3): 333–368, doi: 10.1210/er.2017-00235.
8.
Mullier A., Bouret S.G., Prevot V., Dehouck B. Differential distribution of tight junction proteins suggests a role for tanycytes in blood-hypothalamus barrier regulation in the adult mouse brain. J. Comp. Neurol. 2010; 518(7): 943–962, doi: 10.1002/cne.22273.
9.
Wei L.C., Shi M., Chen L.W., Cao R., Zhang P., Chan Y.S. Nestin-containing cells express glial fibrillary acidic protein in the proliferative regions of central nervous system of postnatal developing and adult mice. Brain Res. Dev. Brain Res. 2002; 139(1): 9–17, doi: 10.1016/s0165-3806(02)00509-6.
10.
Lee D.A., Blackshaw S. Functional implications of hypothalamic neurogenesis in the adult mammalian brain. Int. J. Dev. Neurosci. 2012; 30(8): 615–621, doi: 10.1016/j.ijdevneu.2012.07.003.
11.
Bolborea M., Dale N. Hypothalamic tanycytes: potential roles in the control of feeding and energy balance. Trends Neurosci. 2013; 36(2): 91–100, doi: 10.1016/j.tins.2012.12.008.
12.
Saaltink D.J., Håvik B., Verissimo C.S., Lucassen P.J., Vreugdenhil E. Doublecortin and doublecortin-like are expressed in overlapping and non-overlapping neuronal cell populations: implications for neurogenesis. J. Comp. Neurol. 2012; 520(13): 2805–2823, doi: 10.1002/cne.23144.
13.
Bonnavion P., de Lecea L. Hypocretins in the control of sleep and wakefulness. Curr. Neurol. Neurosci. Rep. 2010; 10(3): 174–179, doi: 10.1007/s11910-010-0101-y.
14.
Nattie E., Li A. Central chemoreception in wakefulness and sleep: evidence for a distributed network and a role for orexin. J. Appl. Physiol. (1985) 2010; 108(5): 1417–1424, doi: 10.1152/japplphysiol.01261.2009.
15.
Peyron C., Tighe D.K., van den Pol A.N., de Lecea L., Heller H.C., Sutcliffe J.G. et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 1998; 18(23): 9996–10015, doi: 10.1523/JNEUROSCI.18-23-09996.1998.
16.
Torrealba F., Yanagisawa M., Saper C.B. Colocalization of orexin A and glutamate immunoreactivity in axon terminals in the tuberomammillary nucleus in rats. Neuroscience 2003; 119(4): 1033–1044, doi: 10.1016/s0306-4522(03)00238-0.
17.
Chou T.C., Lee C.E., Lu J., Elmquist J.K., Hara J., Willie J.T. et al. Orexin (hypocretin) neurons contain dynorphin. J. Neurosci. 2001; 21(19): RC168, doi: 10.1523/JNEUROSCI.21-19-j0003.2001.
18.
Nambu T., Sakurai T., Mizukami K., Hosoya Y., Yanagisawa M., Goto K. Distribution of orexin neurons in the adult rat brain. Brain Res. 1999; 827(1–2): 243–260, doi: 10.1016/s0006-8993(99)01336-0.
19.
van den Pol A.N. Hypothalamic hypocretin (orexin): robust innervation of the spinal cord. J. Neurosci. 1999; 19(8): 3171–3182, doi: 10.1523/JNEUROSCI.19-08-03171.1999.
20.
Tsujino N., Sakurai T. Orexin/hypocretin: a neuropeptide at the interface of sleep, energy homeostasis, and reward system. Pharmacol. Rev. 2009; 61(2): 162–176, doi: 10.1124/pr.109.001321.
21.
Marcus J.N., Aschkenasi C.J., Lee C.E., Chemelli R.M., Saper C.B., Yanagisawa M. et al. Differential expression of orexin receptors 1 and 2 in the rat brain. J. Comp. Neurol. 2001; 435(1): 6–25, doi: 10.1002/cne.1190.
22.
Trivedi P., Yu H., MacNeil D.J., Van der Ploeg L.H., Guan X.M. Distribution of orexin receptor mRNA in the rat brain. FEBS Lett. 1998; 438(1–2): 71–75, doi: 10.1016/s0014-5793(98)01266-6.
23.
Arias-Carrion O., Ortega-Robles E., de Celis-Alonso B., Palasz A., Mendez-Rojas M.A., Salas-Pacheco J. et al. Depletion of hypocretin/orexin neurons increases cell proliferation in the adult subventricular zone. CNS Neurol. Disord. Drug Targets 2018; 17(2): 106–112, doi: 10.2174/1871527317666180314115623.
24.
Barson J.R., Leibowitz S.F. Orexin/hypocretin system: role in food and drug overconsumption. Int. Rev. Neurobiol. 2017; 136: 199–237, doi: 10.1016/bs.irn.2017.06.006.
25.
Nevárez N., de Lecea L. Recent advances in understanding the roles of hypocretin/orexin in arousal, affect, and motivation. F1000Res. 2018; 7: F1000 Faculty Rev-1421, doi: 10.12688/f1000research.15097.1.
26.
Sargin D. The role of the orexin system in stress response. Neuropharmacology 2019; 154: 68–78, doi: 10.1016/j.neuropharm.2018.09.034.
27.
Haghparast A., Fatahi Z., Arezoomandan R., Karimi S., Taslimi Z., Zarrabian S. Functional roles of orexin/hypocretin receptors in reward circuit. Prog. Brain Res. 2017; 235: 139–154, doi: 10.1016/bs.pbr.2017.08.005.
28.
Wang C., Wang Q., Ji B., Pan Y., Xu C., Cheng B. et al. The orexin/receptor system: molecular mechanism and therapeutic potential for neurological diseases. Front. Mol. Neurosci. 2018; 11: 220, doi: 10.3389/fnmol.2018.00220.
29.
Chien Y.L., Liu C.M., Shan J.C., Lee H.J., Hsieh M.H., Hwu H.G. et al. Elevated plasma orexin A levels in a subgroup of patients with schizophrenia associated with fewer negative and disorganized symptoms. Psychoneuroendocrinology 2015; 53: 1–9, doi: 10.1016/j.psyneuen.2014.12.012.
30.
Lu X.Y., Bagnol D., Burke S., Akil H., Watson S.J. Differential distribution and regulation of OX1 and OX2 orexin/hypocretin receptor messenger RNA in the brain upon fasting. Horm. Behav. 2000; 37(4): 335–344, doi: 10.1006/hbeh.2000.1584.
31.
Alizamini M.M., Kavianpour M., Karimi-Haghighi S., Fatahi Z., Haghparast A. Intra-hippocampal administration of orexin receptor antagonists dose-dependently attenuates reinstatement of morphine seeking behavior in extinguished rats. Peptides 2018; 110: 40–46, doi: 10.1016/j.peptides.2018.10.011.
32.
Mavanji V., Butterick T.A., Duffy C.M., Nixon J.P., Billington C.J., Kotz C.M. Orexin/hypocretin treatment restores hippocampal-dependent memory in orexin-deficient mice. Neurobiol. Learn. Mem. 2017; 146: 21–30, doi: 10.1016/j.nlm.2017.10.014.
33.
Sadeghi B., Ezzatpanah S., Haghparast A. Effects of dorsal hippocampal orexin-2 receptor antagonism on the acquisition, expression, and extinction of morphine-induced place preference in rats. Psychopharmacology 2016; 233(12): 2329–2341, doi: 10.1007/s00213-016-4280-3.
34.
Akbari E., Naghdi N., Motamedi F. Functional inactivation of orexin 1 receptors in CA1 region impairs acquisition, consolidation and retrieval in Morris water maze task. Behav. Brain Res. 2006; 173(1): 47–52, doi: 10.1016/j.bbr.2006.05.028.
35.
Bahramzadeh Zoeram S., Elahdadi Salmani M., Lashkarbolouki T., Goudarzi I. Hippocampal orexin receptor blocking prevented the stress-induced social learning and memory deficits. Neurobiol. Learn. Mem. 2019; 157: 12–23, doi: 10.1016/j.nlm.2018.11.009.
36.
Edalat P., Kavianpour M., Zarrabian S., Haghparast A. Role of orexin-1 and orexin-2 receptors in the CA1 region of hippocampus in the forced swim stress- and food deprivation-induced reinstatement of morphine seeking behaviors in rats. Brain Res. Bull. 2018; 142: 25–32, doi: 10.1016/j.brainresbull.2018.06.016.
37.
Pourreza P., Babapour V., Haghparast A. Role of dorsal hippocampal orexin-1 receptors in modulation of antinociception induced by chemical stimulation of the lateral hypothalamus. Physiol. Behav. 2018; 185: 79–86, doi: 10.1016/j.physbeh.2017.12.036.
38.
Brojeni M.S., Rashvand M., Haghparast A. Role of orexin receptors within the dentate gyrus of the hippocampus in antinociception induced by chemical stimulation of the lateral hypothalamus in the tail-flick test as a model of acute pain in rats. Physiol. Behav. 2019; 209: 112595, doi: 10.1016/j.physbeh.2019.112595.
39.
Chieffi S., Carotenuto M., Monda V., Valenzano A., Villano I., Precenzano F. et al. Orexin system: the key for a healthy life. Front. Physiol. 2017; 8: 357, doi: 10.3389/fphys.2017.00357.
40.
Li S.B., Jones J.R., de Lecea L. Hypocretins, neural systems, physiology, and psychiatric disorders. Curr. Psychiatry Rep. 2016; 18(1): 7, doi: 10.1007/s11920-015-0639-0.
41.
Wayner M.J., Armstrong D.L., Phelix C.F., Oomura Y. Orexin-A (hypocretin-1) and leptin enhance LTP in the dentate gyrus of rats in vivo. Peptides 2004; 25(6): 991–996, doi: 10.1016/j.peptides.2004.03.018.
42.
Yang L., Zou B., Xiong X., Pascual C., Xie J., Malik A. et al. Hypocretin/orexin neurons contribute to hippocampus-dependent social memory and synaptic plasticity in mice. J. Neurosci. 2013; 33(12): 5275–5284, doi: 10.1523/JNEUROSCI.3200-12.2013.
43.
Ito N., Yabe T., Gamo Y., Nagai T., Oikawa T., Yamada H. et al. I.c.v. administration of orexin-A induces an antidepressive-like effect through hippocampal cell proliferation. Neuroscience 2008; 157(4): 720–732, doi: 10.1016/j.neuroscience.2008.09.042.
44.
Arendt D.H., Ronan P.J., Oliver K.D., Callahan L.B., Summers T.R., Summers C.H. Depressive behavior and activation of the orexin/hypocretin system. Behav. Neurosci. 2013; 127(1): 86–94, doi: 10.1037/a0031442.
45.
Zhao X., Zhang R.x., Tang S., Ren Y.y., Yang W.x., Liu X.m. et al. Orex-in-A-induced ERK1/2 activation reverses impaired spatial learning and memory in pentylenetetrazol-kindled rats via OX1R-mediated hippocampal neurogenesis. Peptides 2014; 54: 140–147, doi: 10.1016/j.peptides.2013.11.019.
46.
Samokhina E., Samokhin A. Neuropathological profile of the pentylenetetrazol (PTZ) kindling model. Int. J. Neurosci. 2018; 128(11): 1086–1096, doi: 10.1080/00207454.2018.1481064.
47.
Sousa-Ferreira L., Álvaro A.R., Aveleira C., Santana M., Brandão I., Kügler S. et al. Proliferative hypothalamic neurospheres express NPY, AGRP, POMC, CART and orexin-A and differentiate to functional neurons. PLoS One 2011; 6(5): e19745, doi: 10.1371/journal.pone.0019745.
48.
Recabal A., Caprile T., García-Robles M.L.A. Hypothalamic neurogenesis as an adaptive metabolic mechanism. Front. Neurosci. 2017; 11: 190, doi: 10.3389/fnins.2017.00190.
49.
Rojczyk-Gołębiewska E., Pałasz A., Wiaderkiewicz R. Hypothalamic subependymal niche: a novel site of the adult neurogenesis. Cell. Mol. Neurobiol. 2014; 34(5): 631–642, doi: 10.1007/s10571-014-0058-5.
50.
Batailler M., Droguerre M., Baroncini M., Fontaine C., Prevot V., Migaud M. DCX-expressing cells in the vicinity of the hypothalamic neurogenic niche: a comparative study between mouse, sheep, and human tissues. J. Comp. Neurol. 2014; 522(8): 1966–1985, doi: 10.1002/cne.23514.
51.
Ebling F.J. Hypothalamic control of seasonal changes in food intake and body weight. Front. Neuroendocrinol. 2015; 37: 97–107, doi: 10.1016/j.yfrne.2014.10.003.
52.
Samms R.J., Lewis J.E., Lory A., Fowler M.J., Cooper S., Warner A. et al. Antibody-mediated inhibition of the FGFR1c isoform induces a catabolic lean state in Siberian hamsters. Curr. Biol. 2015; 25(22): 2997–3003, doi: 10.1016/j.cub.2015.10.010.
53.
Rizzoti K., Lovell-Badge R. Pivotal role of median eminence tanycytes for hypothalamic function and neurogenesis. Mol. Cell. Endocrinol. 2017; 445: 7–13, doi: 10.1016/j.mce.2016.08.020.
54.
Lee D.A., Bedont J.L., Pak T., Wang H., Song J., Miranda-Angulo A. et al. Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat. Neurosci. 2012; 15(5): 700–702, doi: 10.1038/nn.3079.
55.
Lee D.A., Yoo S., Pak T., Salvatierra J., Velarde E., Aja S. et al. Dietary and sex-specific factors regulate hypothalamic neurogenesis in young adult mice. Front. Neurosci. 2014; 8: 157, doi: 10.3389/fnins.2014.00157.
56.
Duque A., Spector R. A balanced evaluation of the evidence for adult neurogenesis in humans: implication for neuropsychiatric disorders. Brain Struct. Funct. 2019; 224(7): 2281–2295, doi: 10.1007/s00429-019-01917-6.