PL EN
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Lipidy oraz zapalenie stanowią dwa fundamentalne ogniwa w patofizjologii ostrego zawału serca (acute myocardial infarction – AMI). Celem niniejszej pracy była ocena ekspresji genów interleukiny 1 beta (IL-1β) oraz konwertazy białkowej subtylizyny/keksyny typu 9 (proprotein convertase subtilisin/kexin type 9 – PCSK9) u chorych z AMI. Do badania włączono 112 hospitalizowanych chorych z AMI, spełniających kryteria włączenia i wyłączenia – 55 z zawałem serca z uniesieniem odcinka ST (STEMI) oraz 57 z zawałem serca bez uniesienia odcinka ST (NSTEMI) – w wieku od 35 do 92 lat (średni wiek 65 lat). Grupę kontrolną stanowiły osoby z wykluczoną w koronarografii chorobą wieńcową (coronary artery disease – CAD; n = 41) oraz osoby z przewlekłym zespołem wieńcowym (chronic coronary syndrome – CCS; n = 53). Materiał RNA z komórek jednojądrzastych krwi obwodowej (peripheral blood mononuclear cells – PBMCs) uzyskano za pomocą metody TRIzol Reagent (Invitrogen), a ocenę ilościową ekspresji genów oceniano za pomocą metody reakcji łańcuchowej polimerazy w czasie rzeczywistym (quantitative real-time polymerase chain reaction – QRT PCR). Ekspresja PCSK9 była większa (p = 0,04), a IL-1β mniejsza (p < 0,001) u chorych z AMI w porównaniu z grupą kontrolną. Większą aktywność transkrypcyjną PCSK9 stwierdzono w bardziej zaawansowanych postaciach CAD, u mężczyzn oraz w przypadkach zwiększonej masy ciała, niższej frakcji wyrzutowej lewej komory (left ventricular ejection fraction – LVEF) i niższego stężenia cholesterolu frakcji HDL (high-density lipoprotein). Z kolei większą ekspresję IL-1β obserwowano u chorych z AMI i współistniejącą hipercholesterolemią. Dokładne zrozumienie biologii IL-1β i PCSK9, dwóch reprezentantów kluczowych ogniw patofizjologicznych w zawale serca, ma duże znaczenie praktyczne, szczególnie w kontekście szeroko aktualnie dostępnych metod farmakologicznej interwencji w ich szlaki metaboliczne.
REFERENCJE (35)
1.
Virani S.S., Alonso A., Aparicio H.J., Benjamin E.J., Bittencourt M.S., Callaway C.W. et al. Heart Disease and Stroke Statistics – 2021 Update: A Report From the American Heart Association. Circulation 2021; 143(8): e254–e743, doi: 10.1161/CIR.0000000000000950.
 
2.
Ross R. Atherosclerosis – an inflammatory disease. N. Engl. J. Med. 1999; 340(2): 115–126, doi: 10.1056/NEJM199901143400207.
 
3.
Zhang D.W., Lagace T.A., Garuti R., Zhao Z., McDonald M., Horton J.D. et al. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J. Biol. Chem. 2007; 282(25): 18602–18612, doi: 10.1074/jbc.M702027200.
 
4.
Zheng F., Xing S., Gong Z., Xing Q. NLRP3 inflammasomes show high expression in aorta of patients with atherosclerosis. Heart Lung Circ. 2013; 22(9): 746–750, doi: 10.1016/j.hlc.2013.01.012.
 
5.
Paramel Varghese G., Folkersen L., Strawbridge R.J., Halvorsen B., Yndestad A., Ranheim T. et al. NLRP3 inflammasome expression and activation in human atherosclerosis. J. Am. Heart Assoc. 2016; 5(5): e003031, doi: 10.1161/JAHA.115.003031.
 
6.
Khovidhunkit W., Kim M.S., Memon R.A., Shigenaga J.K., Moser A.H., Feingold K.R. et al. Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. J. Lipid Res. 2004; 45(7): 1169–1196, doi: 10.1194/jlr.R300019-JLR200.
 
7.
Liao W., Rudling M., Angelin B. Endotoxin suppresses rat hepatic low-density lipoprotein receptor expression. Biochem. J. 1996; 313(Pt 3): 873–878, doi: 10.1042/bj3130873.
 
8.
Walley K.R., Thain K.R., Russell J.A., Reilly M.P., Meyer N.J., Ferguson J.F. et al. PCSK9 is a critical regulator of the innate immune response and septic shock outcome. Sci. Transl. Med. 2014; 6(258): 258ra143, doi: 10.1126/scitranslmed.3008782.
 
9.
Ferri N., Tibolla G., Pirillo A., Cipollone F., Mezzetti A., Pacia S. et al. Proprotein convertase subtilisin kexin type 9 (PCSK9) secreted by cultured smooth muscle cells reduces macrophages LDLR levels. Atherosclerosis 2012; 220(2): 381–386, doi: 10.1016/j.atherosclerosis.2011.11.026.
 
10.
Ricci C., Ruscica M., Camera M., Rossetti L., Macchi C., Colciago A. et al. PCSK9 induces a pro-inflammatory response in macrophages. Sci. Rep. 2018; 8(1): 2267, doi: 10.1038/s41598-018-20425-x.
 
11.
Feingold K.R., Pollock A.S., Moser A.H., Shigenaga J.K., Grunfeld C. Discordant regulation of proteins of cholesterol metabolism during the acute phase response. J. Lipid Res. 1995; 36(7): 1474–1482.
 
12.
Mach F., Baigent C., Catapano A.L., Koskinas K.C., Casula M., Badimon L. et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020; 41(1): 111–188, doi: 10.1093/eurheartj/ehz455.
 
13.
Ferri N., Ruscica M. Proprotein convertase subtilisin/kexin type 9 (PCSK9) and metabolic syndrome: insights on insulin resistance, inflammation, and atherogenic dyslipidemia. Endocrine 2016; 54(3): 588–601, doi: 10.1007/s12020-016-0939-0.
 
14.
Almontashiri N.A., Vilmundarson R.O., Ghasemzadeh N., Dandona S., Roberts R., Quyyumi A.A. et al. Plasma PCSK9 levels are elevated with acute myocardial infarction in two independent retrospective angiographic studies. PLoS One 2014; 9(9): e106294, doi: 10.1371/journal.pone.0106294.
 
15.
Feingold K.R., Moser A.H., Shigenaga J.K., Patzek S.M., Grunfeld C. Inflammation stimulates the expression of PCSK9. Biochem. Biophys. Res. Commun. 2008; 374(2): 341–344, doi: 10.1016/j.bbrc.2008.07.023.
 
16.
Perisic L., Hedin E., Razuvaev A., Lengquist M., Osterholm C., Folkersen L. et al. Profiling of atherosclerotic lesions by gene and tissue microarrays reveals PCSK6 as a novel protease in unstable carotid atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2013; 33(10): 2432–2443, doi: 10.1161/ATVBAHA.113.301743.
 
17.
Bentzon J.F., Otsuka F., Virmani R., Falk E. Mechanisms of plaque formation and rupture. Circ. Res. 2014; 114(12): 1852–1866, doi: 10.1161/CIRCRESAHA.114.302721.
 
18.
Parthasarathy S., Quinn M.T., Steinberg D. Is oxidized low density lipoprotein involved in the recruitment and retention of monocyte/macrophages in the artery wall during the initiation of atherosclerosis? Basic Life Sci. 1988; 49: 375–380, doi: 10.1007/978-1-4684-5568-7_58.
 
19.
Pothineni N.V.K., Karathanasis S.K., Ding Z. Arulandu A., Varughese K.I., Mehta J.L. LOX-1 in atherosclerosis and myocardial ischemia: biology, genetics, and modulation. J. Am. Coll. Cardiol. 2017; 69(22): 2759–2768, doi: 10.1016/j.jacc.2017.04.010.
 
20.
Ding Z., Liu S., Wang X., Theus S., Deng X., Fan Y. et al. PCSK9 regulates expression of scavenger receptors and ox-LDL uptake in macrophages. Cardiovasc. Res. 2018; 114(8): 1145–1153, doi: 10.1093/cvr/cvy079.
 
21.
Liu A., Frostegård J. PCSK9 plays a novel immunological role in oxidized LDL-induced dendritic cell maturation and activation of T cells from human blood and atherosclerotic plaque. J. Intern. Med. 2018; 284: 193–210, doi: 10.1111/joim.12758.
 
22.
Ding Z., Wang X., Liu S., Zhou S., Kore R.A., Mu S. et al. NLRP3 inflammasome via IL-1β regulates PCSK9 secretion. Theranostics 2020; 10(16): 7100–7110, doi: 10.7150/thno.45939.
 
23.
Duewell P., Kono H., Rayner K.J., Sirois C.M., Vladimer G., Bauernfeind F.G. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals that form early in disease. Nature 2010; 464(7293): 1357–1361, doi: 10.1038/nature08938.
 
24.
Bujak M., Dobaczewski M., Chatila K., Mendoza L.H., Li N., Reddy A. et al. Interleukin-1 receptor type I signaling critically regulates infarct healing and cardiac remodeling. Am. J. Pathol. 2008; 173(1): 57–67, doi: 10.2353/ajpath.2008.070974.
 
25.
Danesh J., Wheeler J.G., Hirschfield G.M., Eda S., Eiriksdottir G., Rumley A. et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N. Engl. J. Med. 2004; 350(14): 1387–1397, doi: 10.1056/NEJMoa032804.
 
26.
Saxena A., Russo I., Frangogiannis N.G. Inflammation as a therapeutic target in myocardial infarction: learning from past failures to meet future challenges. Transl. Res. 2016; 167(1): 152–166, doi: 10.1016/j.trsl.2015.07.002.
 
27.
Frangogiannis N.G. Regulation of the inflammatory response in cardiac repair. Circ. Res. 2012; 110(1): 159–173, doi: 10.1161/CIRCRESAHA.111.243162.
 
28.
Toldo S., Mezzaroma E., Mauro A.G., Salloum F., Van Tassell B.W., Abbate A. The inflammasome in myocardial injury and cardiac remodeling. Antioxid. Redox Signal. 2015; 22(13): 1146–1161, doi: 10.1089/ars.2014.5989.
 
29.
Zhang Y., Liu J., Li S., Xu R.X., Sun J., Tang Y. et al. Proprotein convertase subtilisin/kexin type 9 expression is transiently up-regulated in the acute period of myocardial infarction in rat. BMC Cardiovasc. Disord. 2014; 14: 192, doi: 10.1186/1471-2261-14-192.
 
30.
Van Tassell B.W., Toldo S., Mezzaroma E., Abbate A. Targeting interleukin-1 in heart disease. Circulation 2013; 128(17): 1910–1923, doi: 10.1161/CIRCULATIONAHA.113.003199.
 
31.
Hwang M.W., Matsumori A., Furukawa Y., Ono K., Okada M., Iwasaki A. et al. Neutralization of interleukin-1beta in the acute phase of myocardial infarction promotes the progression of left ventricular remodeling. J. Am. Coll. Cardiol. 2001; 38(5): 1546–1553, doi: 10.1016/s0735-1097(01)01591-1.
 
32.
Ridker P.M., Everett B.M., Thuren T., MacFadyen J.G., Chang W.H., Ballantyne C. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 2017; 377(12): 1119–1131, doi: 10.1056/NEJMoa1707914.
 
33.
Abbate A., Kontos M.C., Abouzaki N.A., Melchior R.D., Thomas C., Van Tassell B.W. et al. Comparative safety of interleukin-1 blockade with anakinra in patients with ST-segment elevation acute myocardial infarction (from the VCU-ART and VCU-ART2 pilot studies). Am. J. Cardiol. 2015; 115(3): 288–292, doi: 10.1016/j.amjcard.2014.11.003.
 
34.
Antonopoulos A.S., Margaritis M., Lee R., Channon K., Antoniades C. Statins as anti-inflammatory agents in atherogenesis: molecular mechanisms and lessons from the recent clinical trials. Curr. Pharm. Des. 2012; 18(11): 1519–1530, doi: 10.2174/138161212799504803.
 
35.
Liberale L., Carbone F., Camici G.G., Montecucco F. IL-1β and statin treatment in patients with myocardial infarction and diabetic cardiomyopathy. J. Clin. Med. 2019; 8(11): 1764, doi: 10.3390/jcm8111764.
 
eISSN:1734-025X
Journals System - logo
Scroll to top