Układ dopaminergiczny może wpływać na reakcję presyjną ośrodkowo działającej histaminy u szczurów we wstrząsie krwotocznym
Więcej
Ukryj
1
Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
2
Faculty of Medicine, Wroclaw Medical University, Poland
3
Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Sezione di Farmacologia e Medicina Molecolare, Università di Modena e Reggio Emilia, Modena, Italy
Autor do korespondencji
Jerzy Jochem
Katedra i Zakład Fizjologii, Wydział Nauk Medycznych w Zabrzu ŚUM, ul. Jordana 19, 41-808 Zabrze
Ann. Acad. Med. Siles. 2025;79:418-424
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Wstęp:
Histamina podawana do komory bocznej mózgu (intracerebroventricular – icv) wywołuje efekt resuscytacyjny u szczurów we wstrząsie krwotocznym. Receptory dopaminowe występują w drogach neuronalnych związanych z ośrodkową regulacją układu krążenia, dlatego celem pracy było zbadanie wpływu zablokowania receptorów dopaminowych na efekty działania histaminy we wstrząsie krwotocznym.
Materiał i metody:
Badania przeprowadzono u znieczulonych ketaminą/ksylazyną (100 mg/kg + 10 mg/kg, dootrzewnowo) samców szczurów szczepu Wistar, u których indukowano odwracalną hipotensję krwotoczną ze średnim ciśnieniem tętniczym krwi (mean arterial pressure – MAP) 30–35 mmHg. Niezwłocznie po zakończeniu krwotoku u zwierząt stosowano icv premedykację antagonistami receptorów dopaminowych lub 0,9-proc. roztworem NaCl; 5 minut później podawano icv histaminę (50 nmol) bądź 0,9-proc. roztwór NaCl.
Wyniki:
Hipotensji krwotocznej towarzyszyło obniżenie ciśnienia tętna (pulse pressure – PP), częstości rytmu serca (heart rate – HR) i krezkowego przepływu krwi (mesenteric blood flow – MBF). Histamina wywołała wzrosty MAP, HR i MBF, pozostając bez wpływu na PP. Premedykacja antagonistą receptorów dopaminowych D4 L-745,870 nasilała wywoływane przez histaminę zmiany MAP i MBF, nie miała natomiast wpływu na PP i HR. Nie stwierdzono ani wpływu antagonistów innych receptorów dopaminowych na działanie histaminy, ani efektów samodzielnego działania blokerów receptorów dopaminowych w grupach kontrolnych.
Wnioski:
Dopamina, działając poprzez receptory D4, jest zdolna do modulowania reakcji presyjnej, wywoływanej przez ośrodkowo działającą histaminę u szczurów we wstrząsie krwotocznym.
REFERENCJE (37)
1.
Kauvar DS, Lefering R, Wade CE. Impact of hemorrhage on trauma outcome: an overview of epidemiology, clinical presentations, and therapeutic considerations. J Trauma. 2006;60(6 Suppl):S3–11. doi: 10.1097/01.ta.0000199961.02677.19.
2.
Khodadadi F, Bahaoddini A, Tavassoli A, Ketabchi F. Heart rate variability and pulmonary dysfunction in rats subjected to hemorrhagic shock. BMC Cardiovasc Disord. 2020;20(1):331. doi: 10.1186/s12872-020-01606-x.
3.
Bonanno FG. Hemorrhagic shock: The “physiology approach”. J Emerg Trauma Shock. 2012;5(4):285–295. doi: 10.4103/0974-2700.102357.
4.
Bertolini A. The opioid/anti-opioid balance in shock: a new target for therapy in resuscitation. Resuscitation. 1995;30(1):29–42. doi: 10.1016/0300-9572(94)00863-b.
5.
Jochem J. Cardiovascular effects of histamine administered intracerebroventricularly in critical haemorrhagic hypotension in rats. J Physiol Pharmacol. 2000;51(2):229–239.
6.
Jochem J, Zwirska-Korczala K, Rybus-Kalinowska B, Jagodzińska J, Korzonek-Szlacheta I. Influence of SKF 91488, histamine N-methyl-transferase inhibitor, on the central cardiovascular regulation during controlled, stepwise hemorrhagic hypotension in rats. Pol J Pharmacol. 2002;54(3):237–244.
7.
Jochem J. Involvement of the sympathetic nervous system in the reversal of critical haemorrhagic hypotension by endogenous central histamine in rats. Naunyn Schmiedebergs Arch Pharmacol. 2004;369(4):418–427. doi: 10.1007/s00210-004-0883-z.
8.
Ishaq S, Shah IA, Lee SD, Wu BT. Effects of exercise training on nigrostriatal neuroprotection in Parkinson’s disease: a systematic review. Front Neurosci. 2025;18:1464168. doi: 10.3389/fnins.2024.1464168.
9.
Zhou Z, Yan Y, Gu H, Sun R, Liao Z, Xue K, et al. Dopamine in the prefrontal cortex plays multiple roles in the executive function of patients with Parkinson’s disease. Neural Regen Res. 2024;19(8):1759–1767. doi: 10.4103/1673-5374.389631.
10.
Dunigan AI, Roseberry AG. Actions of feeding-related peptides on the mesolimbic dopamine system in regulation of natural and drug rewards. Addict Neurosci. 2022;2:100011. doi: 10.1016/j.addicn.2022.100011.
11.
Li Z, Zheng L, Wang J, Wang L, Qi Y, Amin B, et al. Dopamine in the regulation of glucose and lipid metabolism: a narrative review. Obesity. 2024;32(9):1632–1645. doi: 10.1002/oby.24068.
12.
Akyuz E, Polat AK, Eroglu E, Kullu I, Angelopoulou E, Paudel YN. Revisiting the role of neurotransmitters in epilepsy: An updated review. Life Sci. 2021;265:118826. doi: 10.1016/j.lfs.2020.118826.
13.
Wise RA, Jordan CJ. Dopamine, behavior, and addiction. J Biomed Sci. 2021;28(1):83. doi: 10.1186/s12929-021-00779-7.
14.
Granata AR, Woodruff GN. Dopaminergic mechanisms in the nucleus tractus solitarius and effects on blood pressure. Brain Res Bull. 1982;8(5):483–488. doi: 10.1016/0361-9230(82)90005-3.
15.
Bazzani C, Nardi MG, Ferrante F, Bertolini A, Guarini S. Dopamine D1 receptors are involved in the ACTH-induced reversal of hemorrhagic shock. Eur J Pharmacol. 1994;253(3):303–306. doi: 10.1016/0014-2999(94)90207-0.
16.
Eriksson KS, Sergeeva OA, Haas HL, Selbach O. Orexins/hypocretins and aminergic systems. Acta Physiol. 2010;198(3):263–275. doi: 10.1111/j.1748-1716.2009.02015.x.
17.
Clément P, Bernabé J, Denys P, Alexandre L, Giuliano F. Ejaculation induced by i.c.v. injection of the preferential dopamine D(3) receptor agonist 7-hydroxy-2-(di-N-propylamino)tetralin in anesthetized rats. Neuroscience. 2007;145(2):605–610. doi: 10.1016/j.neuroscience.2006.12.003.
18.
Jasikowska K, Czuba Z, Jochem J. Effects of histamine H4 receptor ligands in hemorrhagic shock in rats. 47th Annual Meeting European Histamine Research Society, Dublin 30.05–02.06.2018, Abstract book, p. 66.
19.
Jasikowska K, Rybus-Kalinowska B, Klose A, Nowak D, Jochem J. Bombesin-like peptides are able to affect central histamine-induced resuscitating effect in haemorrhage-shocked rats. Ann Acad Med Siles. 2020;74:40–45. doi: 10.18794/aams/112436.
20.
Brown RE, Stevens DR, Haas HL. The physiology of brain histamine. Prog Neurobiol. 2001;63(6):637–672. doi: 10.1016/s0301-0082(00)00039-3.
21.
Miklós IH, Kovács KJ. Functional heterogeneity of the responses of histaminergic neuron subpopulations to various stress challenges. Eur J Neurosci. 2003;18(11):3069–3079. doi: 10.1111/j.1460-9568.2003.03033.x.
22.
Jochem J, Kasperska-Zajac A. The role of the histaminergic system in the central cardiovascular regulation in haemorrhagic hypotension. Folia Med Cracov. 2012;52(3–4):31–41.
23.
Jochem J. Central histamine-induced reversal of critical haemorrhagic hypotension in rats – haemodynamic studies. J Physiol Pharmacol. 2002;53(1):75–84.
24.
Altinbas B, Guvenc G, Erkan LG, Ilhan T, Niaz N, Yalcin M. Histamine restores hemorrhage induced hypotension by activating cholinergic neurons in nucleus tractus solitarius. Brain Res. 2016;1649(Pt A):132–140. doi: 10.1016/j.brainres.2016.06.047.
25.
Jochem J, Zwirska-Korczala K. Involvement of central noradrenergic system in the pressor effect of histamine administered intracerebro-ventricularly in rats – haemodynamic studies. Inflamm Res. 2002;51 Suppl 1:S59–60. doi: 10.1007/pl00022448.
26.
Jochem J, Zak A, Rybczyk R, Irman-Florjanc T. Interactions between the serotonergic and histaminergic systems in the central cardiovascular regulation in haemorrhage-shocked rats: involvement of 5-HT(1A) receptors. Inflamm Res. 2009;58 Suppl 1:38–40. doi: 10.1007/s00011-009-0658-6.
27.
Yamamoto K, Fontaine R, Pasqualini C, Vernier P. Classification of dopamine receptor genes in vertebrates: nine subtypes in Osteichthyes. Brain Behav Evol. 2015;86(3–4):164–175. doi: 10.1159/000441550.
28.
Kim A, Di Ciano P, Pushparaj A, Leca J, Le Foll B. The effects of dopamine D4 receptor ligands on operant alcohol self-administration and cue- and stress-induced reinstatement in rats. Eur J Pharmacol. 2020;867: 172838. doi: 10.1016/j.ejphar.2019.172838.
29.
Rivera A, Suárez-Boomgaard D, Miguelez C, Valderrama-Carvajal A, Baufreton J, Shumilov K, et al. Dopamine D4 receptor is a regulator of morphine-induced plasticity in the rat dorsal striatum cells. Cells. 2021;11(1):31. doi: 10.3390/cells11010031.
30.
Di Ciano P, Grandy DK, Le Foll B. Dopamine D4 receptors in psychostimulant addiction. Adv Pharmacol. 2014;69:301–321. doi: 10.1016/B978-0-12-420118-7.00008-1.
31.
Rodríguez-Serrano LM, López-Castillo AP, Cabrera-Mejía MC, Cedillo-Figueroa AS, Zepeda-Ortigosa N, Carregha-Lozano C, et al. Coadministration antagonist dopamine receptor D4 with CB2 receptor agonist decreases binge-like intake of palatable food in mice. Front Behav Neurosci. 2025;19:1572374. doi: 10.3389/fnbeh.2025.1572374.
32.
Sanna F, Contini A, Melis MR, Argiolas A. Role of dopamine D4 receptors in copulatory behavior: Studies with selective D4 agonists and antagonists in male rats. Pharmacol Biochem Behav. 2015;137:110–118. doi: 10.1016/j.pbb.2015.08.012.
33.
Sato Y, Matsumoto M, Koganezawa T. The dopaminergic system mediates the lateral habenula-induced autonomic cardiovascular responses. Front Physiol. 2024;15:1496726. doi: 10.3389/fphys.2024.1496726.
34.
Velazquez-Hernandez G, Sotres-Bayon F. Lateral habenula mediates defensive responses only when threat and safety memories are in conflict. eNeuro. 2021;8(2):ENEURO.0482-20.2021. doi: 10.1523/ENEURO.0482-20.2021.
35.
Hui Y, Du C, Xu T, Zhang Q, Tan H, Liu J. Dopamine D4 receptors in the lateral habenula regulate depression-related behaviors via a pre-synaptic mechanism in experimental Parkinson’s disease. Neurochem Int. 2020;140:104844. doi: 10.1016/j.neuint.2020.104844.
36.
Stephenson-Jones M, Floros O, Robertson B, Grillner S. Evolutionary conservation of the habenular nuclei and their circuitry controlling the dopamine and 5-hydroxytryptophan (5-HT) systems. Proc Natl Acad Sci U S A. 2012;109(3):E164–173. doi: 10.1073/pnas.1119348109.
37.
Giuliani D, Ottani A, Altavilla D, Bazzani C, Squadrito F, Guarini S. Melanocortins and the cholinergic anti-inflammatory pathway. Adv Exp Med Biol. 2010;681:71–87. doi: 10.1007/978-1-4419-6354-3_6.