Warianty pojedynczego nukleotydu MBD5 u dwojga dzieci z mutacjami w genie kanału sodowego SCN1A i SCN9A oraz przegląd literatury
Więcej
Ukryj
1
Students’ Scientific Club, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
2
Department of Paediatrics, Diabetology and Endocrinology, University Clinical Centre, Gdańsk, Poland
3
Centrum Zdrowia Dziecka i Rodziny im. Jana Pawła II w Sosnowcu, Poland
4
Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
Autor do korespondencji
Patrycja Rozwadowska-Kunecka
Klinika Pediatrii, Diabetologii i Endokrynologii, Uniwersyteckie Centrum Kliniczne, ul. Dębinki 7, 80-952 Gdańsk
Ann. Acad. Med. Siles. 2025;79:384-392
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Czynniki genetyczne, zwłaszcza polimorfizmy będące konsekwencją mutacji w genomie, mają duże znaczenie w etiologii lekoopornych typów padaczki. W pracy opisano przypadki dwojga pacjentów o bardzo podobnym przebiegu choroby, u których zdiagnozowano zaburzenia rozwojowe, padaczkę lekooporną i zaburzenia ze spektrum autyzmu. U obojga pacjentów stwierdzono mutacje missense genu MBD5, natomiast każdy z przypadków charakteryzował się inną mutacją kanału sodowego: w przypadku pierwszej pacjentki, 5-letniej dziewczynki, zaobserwowano mutację genu SCN1A, w drugim przypadku, u 6-letniego chłopca, rozpoznano mutację SCN9A. Dotychczas w literaturze medycznej nie opublikowano artykułów opisujących przypadki z takim współwystępowaniem mutacji. W obu przedstawionych przypadkach zalecane leczenie farmakologiczne nie przyniosło rezultatów, co może wskazywać na nieskuteczność konwencjonalnych leków przeciwpadaczkowych i sugerować skupienie się na bardziej ukierunkowanych terapiach.
REFERENCJE (45)
1.
Wang Y, Du X, Bin R, Yu S, Xia Z, Zheng G, et al. Genetic Variants Identified from Epilepsy of Unknown Etiology in Chinese Children by Targeted Exome Sequencing. Sci Rep. 2017;7:40319. doi: 10.1038/srep40319.
2.
National Center for Biotechnology Information (NCBI). National Library of Medicine (US), National Center for Biotechnology Information, 1988 [online]
https://www.ncbi.nlm.nih.gov/g... [accessed on 29 August 2023].
3.
Mullegama SV, Elsea SH. Clinical and Molecular Aspects of MBD5-Associated Neurodevelopmental Disorder (MAND). Eur J Hum Genet. 2016;24(9):1235–1243. doi: 10.1038/ejhg.2016.35.
4.
Myers KA, Marini C, Carvill GL, McTague A, Panetta J, Stutterd C, et al. Phenotypic Spectrum of Seizure Disorders in MBD5-Associated Neurodevelopmental Disorder. Neurol Genet. 2021;7(2):e579. doi: 10.1212/NXG.0000000000000579.
5.
Marco EJ, Aitken AB, Nair VP, da Gente G, Gerdes MR, Bologlu L, et al. Burden of de novo mutations and inherited rare single nucleotide variants in children with sensory processing dysfunction. BMC Med Genomics. 2018;11(1):50. doi: 10.1186/s12920-018-0362-x.
6.
Mullegama SV, Klein SD, Williams SR, Innis JW, Probst FJ, Haldeman-Englert C, et al. Transcriptome analysis of MBD5-associated neurodevelopmental disorder (MAND) neural progenitor cells reveals dysregulation of autism-associated genes. Sci Rep. 2021;11(1):11295. doi: 10.1038/s41598-021-90798-z.
7.
Scheffer IE, Nabbout R. SCN1A-related phenotypes: Epilepsy and beyond. Epilepsia. 2019;60 Suppl 3:S17–S24. doi: 10.1111/epi.16386.
8.
Ma R, Duan Y, Zhang L, Qi X, Zhang L, Pan S, et al. SCN1A-Related Epilepsy: Novel Mutations and Rare Phenotypes. Front Mol Neurosci. 2022;15:826183. doi: 10.3389/fnmol.2022.826183.
9.
Escayg A, MacDonald BT, Meisler MH, Baulac S, Huberfeld G, An-Gourfinkel I, et al. Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2. Nat Genet. 2000;24(4):343–345. doi: 10.1038/74159.
10.
Brunklaus A, Brünger T, Feng T, Fons C, Lehikoinen A, Panagiotakaki E, et al. The gain of function SCN1A disorder spectrum: novel epilepsy phenotypes and therapeutic implications. Brain. 2022;145(11):3816–3831. doi: 10.1093/brain/awac210.
11.
Clatot J, Parthasarathy S, Cohen S, McKee JL, Massey S, Somarowthu A, et al. SCN1A gain-of-function mutation causing an early onset epileptic encephalopathy. Epilepsia. 2023;64(5):1318–1330. doi: 10.1111/epi.17444.
12.
Moretti R, Arnaud L, Bouteiller D, Trouillard O, Moreau P, Buratti J, et al. SCN1A-related epilepsy with recessive inheritance: Two further families. Eur J Paediatr Neurol. 2021;33:121–124. doi: 10.1016/j.ejpn.2021.05.018.
13.
Zuberi SM, Brunklaus A, Birch R, Reavey E, Duncan J, Forbes GH. Genotype-phenotype associations in SCN1A-related epilepsies. Neurology. 2011;76(7):594–600. doi: 10.1212/WNL.0b013e31820c309b.
14.
Meng H, Xu HQ, Yu L, Lin GW, He N, Su T, et al. The SCN1A mutation database: updating information and analysis of the relationships among genotype, functional alteration, and phenotype. Hum Mutat. 2015;36(6):573–580. doi: 10.1002/humu.22782.
15.
Meijer IA, Vanasse M, Nizard S, Robitaille Y, Rossignol E. An atypical case of SCN9A mutation presenting with global motor delay and a severe pain disorder. Muscle Nerve. 2014;49(1):134–138. doi: 10.1002/mus.23968.
16.
Black JA, Waxman SG. Sodium channel expression: a dynamic process in neurons and non-neuronal cells. Dev Neurosci. 1996;18(3):139–152. doi: 10.1159/000111403.
17.
Dib-Hajj SD, Cummins TR, Black JA, Waxman SG. Sodium channels in normal and pathological pain. Annu Rev Neurosci. 2010;33:325–347. doi: 10.1146/annurev-neuro-060909-153234.
18.
Waxman SG. Channelopathic pain: a growing but still small list of model disorders. Neuron. 2010;66(5):622–624. doi: 10.1016/j.neuron.2010.05.029.
19.
Faber CG, Hoeijmakers JG, Ahn HS, Cheng X, Han C, Choi JS, et al. Gain of function Naν1.7 mutations in idiopathic small fiber neuropathy. Ann Neurol. 2012;71(1):26–39. doi: 10.1002/ana.22485.
20.
Cox JJ, Sheynin J, Shorer Z, Reimann F, Nicholas AK, Zubovic L, et al. Congenital insensitivity to pain: novel SCN9A missense and in-frame deletion mutations. Hum Mutat. 2010;31(9):E1670–E1686. doi: 10.1002/humu.21325.
21.
Ishizuka K, Kimura H, Yoshimi A, Banno M, Kushima I, Uno Y, et al. Investigation of single-nucleotide variants in MBD5 associated with autism spectrum disorders and schizophrenia phenotypes. Nagoya J Med Sci. 2016;78(4):465–474. doi: 10.18999/nagjms.78.4.465.
22.
Williams SR, Mullegama SV, Rosenfeld JA, Dagli AI, Hatchwell E, Allen WP, et al. Haploinsufficiency of MBD5 associated with a syndrome involving microcephaly, intellectual disabilities, severe speech impairment, and seizures. Eur J Hum Genet. 2010;18(4):436–441. doi: 10.1038/ejhg.2009.199.
23.
Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S, An JY, et al. Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell. 2020;180(3):568–584.e23. doi: 10.1016/j.cell.2019.12.036.
24.
Mullegama SV, Rosenfeld JA, Orellana C, van Bon BWM, Halbach S, Repnikova E, et al. Reciprocal deletion and duplication at 2q23.1 indicates a role for MBD5 in autism spectrum disorder. Eur J Hum Genet. 2014;22(1):57–63. doi: 10.1038/ejhg.2013.67.
25.
Talkowski ME, Mullegama SV, Rosenfeld JA, van Bon BWM, Shen Y, Repnikova EA, et al. Assessment of 2q23.1 microdeletion syndrome implicates MBD5 as a single causal locus of intellectual disability, epilepsy, and autism spectrum disorder. Am J Hum Genet. 2011;89(4):551–563. doi: 10.1016/j.ajhg.2011.09.011.
26.
O’Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S, et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet. 2011;43(6):585–589. doi: 10.1038/ng.835.
27.
Jing XW, Cheng MM, Niu XY, Yang Y, Yang XL, Yang ZX, et al. Clinical phenotypes and genetic features of epilepsy children with MBD5 gene variants. [Article in Chinese]. Zhonghua Er Ke Za Zhi. 2022;60(4):345–349. doi: 10.3760/cma.j.cn112140-20211015-00874.
28.
Kong Y, Yan K, Hu L, Wang M, Dong X, Lu Y, et al. Association between SCN1A and SCN2A mutations and clinical/EEG features in Chinese patients from epilepsy or severe seizures. Clin Chim Acta. 2018;483:14–19. doi: 10.1016/j.cca.2018.03.027.
29.
Kivity S, Oliver KL, Afawi Z, Damiano JA, Arsov T, Bahlo M, et al. SCN1A clinical spectrum includes the self-limited focal epilepsies of childhood. Epilepsy Res. 2017;131:9–14. doi: 10.1016/j.eplepsyres.2017.01.012.
30.
Brunklaus A, Du J, Steckler F, Ghanty II, Johannesen KM, Fenger CD, et al. Biological concepts in human sodium channel epilepsies and their relevance in clinical practice. Epilepsia. 2020;61(3):387–399. doi: 10.1111/epi.16438.
31.
Fry AE, Rees E, Thompson R, Mantripragada K, Blake P, Jones G, et al. Pathogenic copy number variants and SCN1A mutations in patients with intellectual disability and childhood-onset epilepsy. BMC Med Genet. 2016;17(1):34. doi: 10.1186/s12881-016-0294-2.
32.
Hasirci Bayir BR, Tutkavul K, Eser M, Baykan B. Epilepsy in patients with familial hemiplegic migraine. Seizure. 2021;88:87–94. doi: 10.1016/j.seizure.2021.03.028.
33.
Arthur L, Keen K, Verriotis M, Peters J, Kelly A, Howard RF, et al. Pediatric Erythromelalgia and SCN9A Mutations: Systematic Review and Single-Center Case Series. J Pediatr. 2019;206:217–224.e9. doi: 10.1016/j.jpeds.2018.10.024.
34.
Feng S, He Z, Que L, Luo X, Liang L, Li D, et al. Primary erythromelalgia mainly manifested by hypertensive crisis: A case report and literature review. Front Pediatr. 2022;10:796149. doi: 10.3389/fped.2022.796149.
35.
Hua Y, Cui D, Han L, Xu L, Mao S, Yang C, et al. A novel SCN9A gene variant identified in a Chinese girl with paroxysmal extreme pain disorder (PEPD): a rare case report. BMC Med Genomics. 2022;15(1):159. doi: 10.1186/s12920-022-01302-z.
36.
Sun J, Li L, Yang L, Duan G, Ma T, Li N, et al. Novel SCN9A missense mutations contribute to congenital insensitivity to pain: Unexpected correlation between electrophysiological characterization and clinical phenotype. Mol Pain. 2020;16:1744806920923881. doi: 10.1177/1744806920923881.
37.
Brunklaus A. No evidence that SCN9A variants are associated with epilepsy. Seizure. 2021;91:172–173. doi: 10.1016/j.seizure.2021.05.026.
38.
Albaradie R, Baig DN, Bashir S. Sodium voltage-gated channel alpha subunit 9 mutation in epilepsy. Eur Rev Med Pharmacol Sci. 2021;25(24):7873–7877. doi: 10.26355/eurrev_202112_27635.
39.
Liu Z, Ye X, Qiao P, Luo W, Wu Y, He Y, et al. G327E mutation in SCN9A gene causes idiopathic focal epilepsy with Rolandic spikes: a case report of twin sisters. Neurol Sci. 2019;40(7):1457–1460. doi: 10.1007/s10072-019-03752-3.
40.
van Bon BWM, Koolen DA, Brueton L, McMullan D, Lichtenbelt KD, Adès LC, et al. The 2q23.1 microdeletion syndrome: clinical and behavioural phenotype. Eur J Hum Genet. 2010;18(2):163–170. doi: 10.1038/ejhg.2009.152.
41.
Jaillard S, Dubourg C, Gérard-Blanluet M, Delahaye A, Pasquier L, Dupont C, et al. 2q23.1 microdeletion identified by array comparative genomic hybridisation: an emerging phenotype with Angelman-like features? J Med Genet. 2009;46(12):847–855. doi: 10.1136/jmg.2008.058156.
42.
Mullegama SV, Mendoza-Londono R, Elsea SH. MBD5 Haploinsufficiency. In: Adam MP, Mirzaa GM, Pagon RA, et al. [eds.]. GeneReviews. University of Washington, Seattle; 1993-2023 [online]
https://www.ncbi.nlm.nih.gov/b... Updated 2022 Apr 28 [accessed on 15 April 2023].
43.
Striano P, Coppola A, Pezzella M, Ciampa C, Specchio N, Ragona F, et al. An open-label trial of levetiracetam in severe myoclonic epilepsy of infancy. Neurology. 2007;69(3):250–254. doi: 10.1212/01.wnl.0000265222.24102.db.
44.
Sahli M, Zrhidri A, Elaloui SC, Smaili W, Lyahyai J, Oudghiri FZ, et al. Clinical exome sequencing identifies two novel mutations of the SCN1A and SCN2A genes in Moroccan patients with epilepsy: a case series. J Med Case Rep. 2019;13(1):266. doi: 10.1186/s13256-019-2203-8.
45.
Jones LB, Peters CH, Rosch RE, Owers M, Hughes E, Pal DK, et al. The L1624Q Variant in SCN1A Causes Familial Epilepsy Through a Mixed Gain and Loss of Channel Function. Front Pharmacol. 2021;12:788192. doi: 10.3389/fphar.2021.788192.