Stres oksydacyjny i enzymatyczny układ entyoksydacyjny we krwi i płynie stawowym pacjentów z reumatoidalnym zapaleniem stawów
 
Więcej
Ukryj
1
Department of Biochemistry, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice
 
2
Department of Orthopaedics, District Orthopaedic Hospital, Bytom
 
3
Department of Biophysics, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice
 
 
Autor do korespondencji
Alina Beata Ostałowska   

MD, PhD, Department of Biochemistry, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, ul. Jordana 19, 41-808 Zabrze, tel. +48 32 272 23 18
 
 
Ann. Acad. Med. Siles. 2016;70:196-205
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Wstęp:
W patogenezie reumatoidalnego zapalenia stawów jednym z mechanizmów uszkadzających struktury stawu są reakcje z udziałem reaktywnych form tlenu (RFT).

Materiał i metody:
U 178 pacjentów z RZS oraz 27 zdrowych ochotników oznaczono we krwi i płynie stawowym aktywność enzymów antyoksydacyjnych: izoenzymów dysmutazy ponadtlenkowej manganowej (MnSOD) i cynkowo--miedziowej (CuZnSOD), katalazy (CAT), peroksydazy glutationowej (GPX), reduktazy glutationowej (GR) i transferazy-S-glutationowej (GST) oraz stężenie dialdehydu malonowego (MDA).

Wyniki:
We krwi i płynie stawowym pacjentów z RZS dochodzi do pobudzenia układu antyoksydacyjnego ze wzrostem aktywności enzymów antyoksydacyjnych, zwiększonym stężeniem MDA oraz spadkiem lepkości płynu stawowego.

Wnioski:
Zależność między nasileniem zmian w układzie antyoksydacyjnym a aktywnością zapalenia stawów po-twierdza udział RFT w patogenezie i przebiegu RZS.
REFERENCJE (29)
1.
Ozkan Y., Yardỳm-Akadỳn S., Sepici A., Keskin E., Sepici V., Simsek B. Oxidative status in rheumatoid arthritis. Clin. Rheumatol. 2007; 26(1): 64–68.
 
2.
Hitchon C.A., El-Gabalawy H.S. Oxidation in rheumatoid arthritis. Arthritis. Res. Ther. 2004; 6: 265–278.
 
3.
Schiller J., Fuchs B., Arnold J., Arnold K. Contribution of reactive oxygen species to cartilage degradation in rheumatic diseases: molecular pathways, diagnosis and potential therapeutic strategies. Curr. Med. Chem. 2003; 10: 2123–2145.
 
4.
Henrotin Y., Kurz B., Aigner T. Oxygen and reactive oxygen species in cartilage degradation: friends or foes? Osteoarthritis Cartilage 2005; 13: 643––654.
 
5.
Henrotin Y.E., Bruckner P., Pujol J.P. The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthritis Cartilage 2003; 11: 747–755.
 
6.
Kamanli A., Naziroglu M., Aydilek N., Hacievliyagil C. Plasma lipid peroxidation and antioxidant levels in patients with rheumatoid arthritis. Cell. Biochem. Funct. 2004; 22: 53–57.
 
7.
Çimen M.Y.B., Çimen Ö.B., Kaçmaz M., Öztürk H.S., Yorgancioğlu R., Durak Ì. Oxidant/antioxidant status of the erythrocytes from patients with rheumatoid arthritis. Clin. Rheumatol. 2000; 19: 275–277.
 
8.
Taysi S., Polat F., Gul M., Sari R.A., Bakan E. Lipid peroxidation, some extracellular antioxidants, and antioxidant enzymes in serum of patients with rheumatoid arthritis. Rheumatol. Int. 2002; 21: 200–204.
 
9.
Afonso V., Champy R., Mitrovic D., Collin P., Lomri A. Reactive oxygen species and superoxide dismutases: Role in joint diseases. Joint Bone Spine 2007; 74: 324–329.
 
10.
Gambhir J.K., Lali P., Jain A.K. Correlation between blood antioxidant levels and lipid peroxidation in rheumatoid arthritis. Clin. Biochem. 1997; 30: 351–355.
 
11.
Aletaha D., Ward M.M., Machold K.P., Nell V.P., Stamm T., Smolen J.S. Remission and active disease in rheumatoid arthritis: Defining criteria for disease activity states. Arthritis Rheum 2005; 52(9): 2625–2636.
 
12.
Terčič D., Božič B. The basis of the synovial fluid analysis. Clin. Chem. Lab. Med . 2001; 39: 1221–1226.
 
13.
Ostałowska A., Birkner E., Wiecha M., Kasperczyk S., Kasperczyk A., Kapołka D., Zon-Giebel A. Lipid peroxidation and antioxidant enzymes in synovial fluid of patients with primary and secondary osteoarthritis of the knee joint. Osteoarthritis Cartilage 2006; 14: 139–145.
 
14.
Yamazaki K., Fukuda K., Matsukawa M., Hara F., Matsushita T., Yamamoto N., Yoshida K., Munakata H., Humanishi C. Cyclic tensile stretch loaded on bovine chondrocytes causes depolymerization of hyaluronan: involvement of reactive oxygen species. Arthritis. Rheum. 2003; 48: 3151–3158.
 
15.
Cedergren J., Forslund T., Sundqvist T., Skogh T. Intracellular oxidative activation in synovial fluid neutrophils from patients with rheumatoid arthritis but not from other arthritis patients. J. Rheumatol. 2007; 34: 2162–2170.
 
16.
Robinson J., Watson F., Bucknall R.C., Edwards S.W. Activation of neutrophil reactive-oxidant production by synovial fluid from patients with inflammatory joint disease. Soluble and insoluble immunoglobulin aggregates activate different pathways in primed and unprimed cells. Biochem. J. 1992; 286: 345–351.
 
17.
Borsiczky B., Szabo Z., Jaberansari M.T., Mack P.P., Röth E. Activated PMNs lead to oxidative stress on chondrocytes: a study of swine knees. Acta Orthop. Scand. 2003; 74: 190–195.
 
18.
Mazzetti I., Grigolo B., Pulsatelli L., Dolzani P., Silvestri T., Roseti L., Meliconi R., Facchini A. Differential roles of nitric oxide and oxygen radicals in chondrocytes affected by osteoarthritis and rheumatoid arthritis. Clin. Sci. 2001; 101: 593–599.
 
19.
Tiku M.L., Yan Y.P., Chen K.Y. Hydroxyl radical formation in chondrocytes and cartilage as detected by electron paramagnetic resonance spectroscopy using spin trapping reagents. Free Radic. Res. 1998; 29: 177–187.
 
20.
Tanabe T., Otani H., Mishima K., Ogawa R., Inagaki C. Phorbol 12-myristate 13-acetate (PMA)-induced oxyradical production in rheumatoid synovial cells. Jpn. J. Pharmacol. 1997; 73: 347–351.
 
21.
Carlo M.D., Loeser R.F. Increased oxidative stress with aging reduces chondrocyte survival: correlation with intracellular glutathione levels. Arthritis Rheum. 2003; 48: 3419–3430.
 
22.
Borsiczky B., Zadravecz G., Röth E. Haemarthros induced articular cartilage degradation. Acta Chir. Hung. 1997; 36: 43–45.
 
23.
Dabbagh A.J., Trenam C.W., Morris C.J., Blake D.R. Iron in joint inflammation. Ann. Rheum. Dis. 1993; 52: 67–73.
 
24.
Takahashi T., Tominaga K., Takano H., Ariyoshi W., Habu M., Fukuda J., Maeda H. A decrease in the molecular weight of hyaluronic acid in synovial fluid from patients with temporomandibular disorders. J. Oral. Pathol. Med. 2004; 33: 224–229.
 
25.
Alpaslan C., Bilgihan A., Alpaslan G.H., Güner B., Ozgür Yis M., Erbaş D. Effect of arthrocentesis and sodium hyaluronate injection on nitrite, nitrate, and thiobarbituric acid-reactive substance levels in the synovial fluid. Oral. Surg. 2000; 89: 686–690.
 
26.
Bae S.C., Kim S.J., Sung M.K. Inadequate antioxidant nutrient intake and altered plasma antioxidant status of rheumatoid arthritis patients. J. Am. Coll. Nutr. 2003; 22: 311–315.
 
27.
Sarban S., Kocyigit A., Yazar M., Isikan U. Plasma total antioxidant capacity, lipid peroxidation, and erythrocyte antioxidant enzyme activities in patients with rheumatoid arthritis and osteoarthritis. Clin. Biochem. 2005; 38: 981–986.
 
28.
Ostałowska A., Kasperczyk S., Kasperczyk A., Słowińska L., Marzec M., Stołtny T. et al. Oxidant and anti-oxidant systems of synovial fluid from patients with knee post-traumatic arthritis. J. Orthop. Res. 2007; 25: 804–812.
 
29.
Grisham M.B. Reactive oxygen species in immune responses. Free Rad. Biol. Med. 2004; 36: 1479–1480.
 
 
CYTOWANIA (2):
1.
Malondialdehyde (MDA) – product of lipid peroxidation as marker of homeostasis disorders and aging
Beata Całyniuk, Elżbieta Grochowska-Niedworok, Katarzyna Walkiewicz, Sylwia Kawecka, Ewa Popiołek, Edyta Fatyga
Annales Academiae Medicae Silesiensis
 
2.
Hydromethanolic Root Extract of Gnidia Kraussiana Demonstrates Anti-Inflammatory Effect Through Anti-Oxidant Activity Enhancement in a Rodent Model of Gout
Elizé Dadaya, Benoit Koubala, Dieudonné Ndjonka, Stéphane Zingué, Alphonse Laya, Gisèle Atsang
Dose-Response
 
eISSN:1734-025X
Journals System - logo
Scroll to top