Ocena metabolizmu kostnego i ryzyka złamań u otyłych mężczyzn
 
Więcej
Ukryj
1
Studenckie Koło Naukowe przy Katedrze i Klinice Chorób Wewnętrznych, Autoimmunologicznych i Metabolicznych, Wydział Nauk Medycznych w Katowicach, Śląski Uniwersytet Medyczny w Katowicach
 
2
Katedra i Klinika Chorób Wewnętrznych, Autoimmunologicznych i Metabolicznych, Wydział Nauk Medycznych w Katowicach, Śląski Uniwersytet Medyczny w Katowicach
 
 
Autor do korespondencji
Małgorzata Natalia Grabarczyk   

Studenckie Koło Naukowe przy Katedrze i Klinice Chorób Wewnętrznych, Autoimmunologicznych i Metabolicznych, Wydział Nauk Medycznych w Katowicach, Śląski Uniwersytet Medyczny w Katowicach, ul. Medyków 14, 40-752 Katowice
 
 
Ann. Acad. Med. Siles. 2022;76:5-13
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Wstęp:
Otyłość oraz zespół metaboliczny coraz częściej występują w populacji osób dorosłych. Powszechnie znany jest związek wymienionych zaburzeń ze zwiększonym prawdopodobieństwem wystąpienia chorób układu sercowo-naczyniowego, jednakże mniej oczywisty jest ich wpływ na metabolizm kostny oraz ryzyko złamań. Celem badania była ocena parametrów metabolizmu kostnego, ich związku z ryzykiem złamań u otyłych mężczyzn z otyłością brzuszną oraz zespołem metabolicznym, a także porównanie uzyskanych wyników z wynikami osób zdrowych.

Materiał i metody:
W badaniu wzięło udział 36 otyłych mężczyzn (body mass index – BMI ≥ 30) ze współistniejącą otyłością trzewną (obwód talii – waist circumference – WC ≥ 94) oraz 10 zdrowych mężczyzn z grupy kontrolnej, w wieku 54–77 lat. Do oceny ryzyka złamań zastosowano kalkulator FRAX (Fracture Risk Assessment Tool). U pacjentów oznaczono stężenia markerów metabolizmu kostnego: osteoprotegeryny (OPG), C-końcowego usieciowanego telopeptydu łańcucha kolagenu typu I (CTX1) oraz czynnika wzrostu fibroblastów 23 (fibroblast growth factor 23 – FGF-23).

Wyniki:
U osób otyłych FRAX był istotnie niższy (p < 0,001) niż w grupie kontrolnej. Zaobserwowano ujemną korelację między FRAX i BMI (p < 0,001) u otyłych mężczyzn. U zdrowych osób taka korelacja nie wystąpiła. Jedynie u osób otyłych stwierdzono również ujemną korelację między FRAX i WC (p < 0,001). Obecnej w grupie osób zdrowych pozytywnej korelacji (p < 0,01) między FGF-23 i FRAX nie obserwowano u otyłych mężczyzn.

Wnioski:
U otyłych mężczyzn stwierdzono mniejsze 10-letnie ryzyko złamań w porównaniu z osobami zdrowymi. Dodatkowo wykazano, że w grupie pacjentów otyłych większe BMI oraz obwód talii wiązały się z mniejszym ryzykiem złamań kości, natomiast u osób bez otyłości taka zależność nie występowała. Ponadto u zdrowych mężczyzn większe stężenie FGF-23 było skorelowane ze zwiększonym 10-letnim ryzykiem złamań.

 
REFERENCJE (38)
1.
Alghadir A.H., Gabr S.A., Al-Eisa E. Physical activity and lifestyle effects on bone mineral density among young adults: sociodemographic and biochemical analysis. J. Phys. Ther. Sci. 2015; 27(7): 2261–2270, doi: 10.1589/jpts.27.2261.
 
2.
Alkahtani S., Aljaloud K., Yakout S., Al-Daghri N.M. Interactions between Sedentary and Physical Activity Patterns, Lean Mass, and Bone Density in Arab Men. Dis. Markers 2019; 5917573, doi: 10.1155/2019/5917573.
 
3.
Stepaniak U., Micek A., Waśkiewicz A., Bielecki W., Drygas W., Janion M. et al. Prevalence of general and abdominal obesity and overweight among adults in Poland. Results of the WOBASZ II study (2013–2014) and comparison with the WOBASZ study (2003–2005). Pol. Arch. Med. Wewn. 2016; 126(9): 662–671, doi: 10.20452/pamw.3499.
 
4.
Obesity and overweight in the Western Pacific World Health Organization [online] https://www.who.int/westernpac... [accessed: 11.02.2022].
 
5.
Flegal K.M., Shepherd J.A., Looker A.C., Graubard B.I., Borrud L.G., Ogden C.L. et al. Comparisons of percentage body fat, body mass index, waist circumference, and waist-stature ratio in adults. Am. J. Clin. Nutr. 2009; 89(2): 500–508, doi: 10.3945/ajcn.2008.26847.
 
6.
Romero-Corral A., Somers V.K., Sierra-Johnson J., Thomas R.J., Collazo-Clavell M.L., Korinek J., et al. Accuracy of body mass index in diagnosing obesity in the adult general population. Int. J. Obes. (Lond). 2008; 32(6): 959–966, doi: 10.1038/ijo.2008.11.
 
7.
Vanderwall C., Randall Clark R., Eickhoff J., Carrel A.L. BMI is a poor predictor of adiposity in young overweight and obese children. BMC Pediatr. 2017; 17(1): 135, doi: 10.1186/s12887-017-0891-z.
 
8.
Alberti K.G., Zimmet P., Shaw J. Metabolic syndrome – a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006; 23(5): 469–480, doi: 10.1111/j.1464-5491.2006.01858.x.
 
9.
Glaser D.L., Kaplan F.S. Osteoporosis. Definition and clinical presentation. Spine (Phila Pa 1976). 1997; 22(24 Suppl): 12S–16S, doi: 10.1097/00007632-199712151-00003.
 
10.
Pasco J.A., Seeman E., Henry M.J., Merriman E.N., Nicholson G.C., Kotowicz M.A. The population burden of fractures originates in women with osteopenia, not osteoporosis. Osteoporos. Int. 2006; 17(9): 1404–1409, doi: 10.1007/s00198-006-0135-9.
 
11.
Lespessailles E., Cortet B., Legrand E., Guggenbuhl P., Roux C. Low-trauma fractures without osteoporosis. Osteoporos. Int. 2017; 28(6): 1771–1778, doi: 10.1007/s00198-017-3921-7.
 
12.
Kanis J.A., Johansson H., Harvey N.C., McCloskey E.V. A brief history of FRAX. Arch. Osteoporos. 2018; 13(1): 118, doi: 10.1007/s11657-018-0510-0.
 
13.
FRAX® Fracture Risk Assessment Tool (Centre for Metabolic Bone Diseases, University of Sheffield, UK) [online] https://www.sheffield.ac.uk/FR... [accessed: 11.02.2022].
 
14.
Liu W., Xu C., Zhao H., Xia P., Song R., Gu J. et al. Osteoprotegerin Induces Apoptosis of Osteoclasts and Osteoclast Precursor Cells via the Fas/Fas Ligand Pathway. PLoS One 2015; 10(11): e0142519, doi: 10.1371/journal.pone.0142519.
 
15.
Hofbauer L.C., Khosla S., Dunstan C.R., Lacey D.L., Spelsberg T.C., Riggs B.L. Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology 1999; 140(9): 4367–4370, doi: 10.1210/endo.140.9.7131.
 
16.
Jabbar S., Drury J., Fordham J.N., Datta H.K., Francis R.M., Tuck S.P. Osteoprotegerin, RANKL and bone turnover in postmenopausal osteoporosis. J. Clin. Pathol. 2011; 64(4): 354–357, doi: 10.1136/jcp.2010.086595.
 
17.
Wang H., Yoshiko Y., Yamamoto R., Minamizaki T., Kozai K., Tanne K. et al. Overexpression of fibroblast growth factor 23 suppresses osteoblast differentiation and matrix mineralization in vitro. J. Bone Miner. Res. 2008; 23(6): 939–948, doi: 10.1359/jbmr.080220.
 
18.
Vasikaran S., Eastell R., Bruyère O., Foldes A.J., Garnero P., Griesmacher A. et al. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos. Int. 2011; 22(2): 391–420, doi: 10.1007/s00198-010-1501-1.
 
19.
Shetty S., Kapoor N., Bondu J.D., Thomas N., Paul T.V. Bone turnover markers: Emerging tool in the management of osteoporosis. Indian J. Endocrinol. Metab. 2016; 20(6): 846–852, doi: 10.4103/2230-8210.192914.
 
20.
Szulc P., Varennes A., Delmas P.D., Goudable J., Chapurlat R. Men with metabolic syndrome have lower bone mineral density but lower fracture risk – the MINOS study. J. Bone Miner Res. 2010; 25(6): 1446–1454, doi: 10.1002/jbmr.13.
 
21.
von Muhlen D., Safii S., Jassal S.K., Svartberg J., Barrett-Connor E. Associations between the metabolic syndrome and bone health in older men and women: the Rancho Bernardo Study. Osteoporos. Int. 2007; 18(10): 1337–1344, doi: 10.1007/s00198-007-0385-1.
 
22.
Mohamad N.V., Soelaiman I.N., Chin K.Y. A concise review of testosterone and bone health. Clin. Interv. Aging 2016; 11: 1317–1324, doi: 10.2147/CIA.S115472.
 
23.
Johansson H., Azizieh F., Al Ali N., Alessa T., Harvey N.C., McCloskey E. et al. FRAX- vs. T-score-based intervention thresholds for osteoporosis. Osteoporos. Int. 2017; 28(11): 3099–3105, doi: 10.1007/s00198-017-4160-7.
 
24.
Lecka-Czernik B., Stechschulte L.A., Czernik P.J., Dowling A.R. High bone mass in adult mice with diet-induced obesity results from a combination of initial increase in bone mass followed by attenuation in bone formation; implications for high bone mass and decreased bone quality in obesity. Mol. Cell Endocrinol. 2015; 410: 35–41, doi: 10.1016/j.mce.2015.01.001.
 
25.
Cohen P.G. The hypogonadal-obesity cycle: role of aromatase in modulating the testosterone-estradiol shunt – a major factor in the genesis of morbid obesity. Med. Hypotheses 1999; 52(1): 49–51, doi: 10.1054/mehy.1997.0624.
 
26.
Cooper L.A., Page S.T., Amory J.K., Anawalt B.D., Matsumoto A.M. The association of obesity with sex hormone-binding globulin is stronger than the association with ageing – implications for the interpretation of total testosterone measurements. Clin. Endocrinol. 2015; 83(6): 828–833, doi: 10.1111/cen.12768.
 
27.
Zhang W., Shen X., Wan C., Zhao Q., Zhang L., Zhou Q. et al. Effects of insulin and insulin-like growth factor 1 on osteoblast proliferation and differentiation: differential signalling via Akt and ERK. Cell Biochem. Funct. 2012; 30(4): 297–302, doi: 10.1002/cbf.2801.
 
28.
Chang C.S., Chang Y.F., Wang M.W., Chen C.Y., Chao Y.J., Chang H.J. et al. Inverse relationship between central obesity and osteoporosis in osteoporotic drug naive elderly females: The Tianliao Old People (TOP) Study. J. Clin. Densitom. 2013; 16(2): 204–211, doi: 10.1016/j.jocd.2012.03.008.
 
29.
Sadeghi O., Saneei P., Nasiri M., Larijani B., Esmaillzadeh A. Abdominal Obesity and Risk of Hip Fracture: A Systematic Review and Meta-Analysis of Prospective Studies. Adv. Nutr. 2017; 8(5): 728–738, doi: 10.3945/an.117.015545.
 
30.
Meyer H.E., Willett W.C., Flint A.J., Feskanich D. Abdominal obesity and hip fracture: results from the Nurses’ Health Study and the Health Professionals Follow-up Study. Osteoporos. Int. 2016; 27(6): 2127–2136, doi: 10.1007/s00198-016-3508-8.
 
31.
Ornstrup M.J., Kjær T.N., Harsløf T., Stødkilde-Jørgensen H., Hougaard D.M., Cohen A. et al. Adipose tissue, estradiol levels, and bone health in obese men with metabolic syndrome. Eur. J. Endocrinol. 2015; 172(2): 205–216, doi: 10.1530/EJE-14-0792.
 
32.
Ugur-Altun B., Altun A., Gerenli M., Tugrul A. The relationship between insulin resistance assessed by HOMA-IR and serum osteoprotegerin levels in obesity. Diabetes Res. Clin. Pract. 2005; 68(3): 217–222, doi: 10.1016/j.diabres.2004.10.011.
 
33.
Jia J., Zhou H., Zeng X., Feng S. Estrogen stimulates osteoprotegerin expression via the suppression of miR-145 expression in MG-63 cells. Mol. Med. Rep. 2017; 15(4): 1539–1546, doi: 10.3892/mmr.2017.6168.
 
34.
Hu X., Ma X., Luo Y., Xu Y., Xiong Q., Pan X. et al. Associations of serum fibroblast growth factor 23 levels with obesity and visceral fat accumulation. Clin. Nutr. 2018; 37(1): 223–228, doi: 10.1016/j.clnu.2016.12.010.
 
35.
Mirza M.A., Karlsson M.K., Mellström D., Orwoll E., Ohlsson C., Ljunggren Ö. et al. Serum fibroblast growth factor-23 (FGF-23) and fracture risk in elderly men. J. Bone Miner. Res. 2011; 26(4): 857–864, doi: 10.1002/jbmr.263.
 
36.
Kanda E., Yoshida M., Sasaki S. Applicability of fibroblast growth factor 23 for evaluation of risk of vertebral fracture and chronic kidney disease-mineral bone disease in elderly chronic kidney disease patients. BMC Nephrol. 2012; 13: 122, doi: 10.1186/1471-2369-13-122.
 
37.
Isakova T., Cai X., Lee J., Katz R., Cauley J.A., Fried L.F. et al. Associations of FGF23 With Change in Bone Mineral Density and Fracture Risk in Older Individuals. J. Bone Miner. Res. 2016; 31(4): 742–748, doi: 10.1002/jbmr.2750.
 
38.
Jovanovich A., Bùzková P., Chonchol M., Robbins J., Fink H.A., de Boer I.H. et al. Fibroblast growth factor 23, bone mineral density, and risk of hip fracture among older adults: the cardiovascular health study. J. Clin. Endocrinol. Metab. 2013; 98(8): 3323–3331, doi: 10.1210/jc.2013-1152.
 
eISSN:1734-025X
Journals System - logo
Scroll to top