Promotory wchłaniania wapnia
 
Więcej
Ukryj
1
Farmaceutyczny Zakład Naukowo-Produkcyjny „Biochefa"
 
 
Autor do korespondencji
Barbara Dolińska   

Farmaceutyczny Zakład Naukowo-Produkcyjny „Biochefa”, 41-205 Sosnowiec, ul. Kasztanowa 3, tel./fax: 032 291 69 68
 
 
Ann. Acad. Med. Siles. 2009;63:76-83
 
SŁOWA KLUCZOWE
STRESZCZENIE
Nieodpowiednia podaż wapnia wpływa na utratę masy kostnej oraz ryzyko wystąpienia osteoporozy. Zdrowotne korzyści oczekiwane od wapnia zależą nie tylko od ilości spożywanego wapnia, ale również są bardzo silnie zależne od możliwości organizmu do wchłaniania przyjętego wapnia. Wiele badań poświęconych temu tematowi nie rozważa ilości wapnia rzeczywiście wchłanianego, która nigdy nie wynosi 100%, a waha się w granicach 10-75% w zależności od wieku i stanu zdrowia. Aby wchłanianie wapnia było jak najefektywniejsze poszukuje się substancji zwiększających absorpcję wapnia w przewodzie pokarmowym, a ponadto nie wpływających negatywnie na jego wydalanie. Do takich substancji można obecnie zaliczyć: witaminę D, magnez, inulinę i inneniestrawne sacharydy, niektóre aminokwasy, krótkołańcuchowe kwasy tłuszczowe, laktozę, fosfopeptydy kazeiny i foswityny.
ISSN 0208-5607
 
REFERENCJE (73)
1.
Allen L.H.: Calcium bioavailability and absorption: a review., Am. J. Clin. Nutr, 1982, 35: 783-808.
 
2.
Gueguen L., Pointillart A.: Bioavailability of dietary calcium., J. Am. Coll. Nutr., 2000, 19: 119S-136S.
 
3.
Holick M.F., Vitamin D and bone health, J. Nutr., 1996, 126: 1159S-64S.
 
4.
Chapuy M.C., Arlot M., et all.: Vitamin D3 and calcium to prevent hip fracture in elderly women., N. Engl. J. Med., 1992, 327: 1637-42.
 
5.
Boonen S., Vanderschueren D., Haentjens P., Lips P.: Calcium and vitamin D in prevention and treatment of osteoporosis – a clinical update., J. Int. Med., 2006, 259: 539-52.
 
6.
Francis R.M., Anderson F.H., et all.: Calcium and vitamin D in the prevention of osteoporotic fractures., Q. J. Med., 2006, 99: 355-63.
 
7.
Bischoff H.A., Stahelin H.B., Dick W. et all.: Effects of vitamin D and calcium supplementation on falls: a randomized controlled trial. J. Bone Miner. Res., 2003; 18: 343-351.
 
8.
Bergein O.: Intestinal chemistry. V. Carbohydrates and calcium and phosphorus absorption., J. Biol. Chem., 1926, 70: 35.
 
9.
Wasserman, R.H., Comar C.L.: Carbohydrates and gastrointestinal absorption of radiostrontium and radiocalcium in the rat., Proc. Soc. Exptl. Biol. Med., 1959, 101: 314.
 
10.
Mills R.H., et all.: The influence of lactose on calcium retention in children, J. nutr., 1940, 20: 467.
 
11.
Kabayashi A., Kawai S., Ohbe Y., Nagashima Y.: Effect of dietary lactose and lactose preparation on the intestinal abdla zdrowia organizmu jest jednak odpowiednia podaż wapnia z pożywieniem lub jego dodatkowa suplementacja. Dzienne zapotrzebowanie na wapń wynosi przeciętnie 800-1200 mg na dzień, a wchłanianie jelitowe wapnia u zdrowego dorosłego wynosi ok. 30-40%. Wynika z tego, że codzienna dieta jest niewystarczająca i należy szukać sposobów zwiększających „dostawę” wapnia. Najprostszą z nich jest dodatkowa suplementacja preparatami wapnia (preparaty farmaceutyczne, suplementy diety). Dodatkowym rozwiązaniem może być zrównoważenie diety tak, by dodatkowo dostarczała substancji wzmagających wchłanianie wapnia lub pozytywnie wpływających na metabolizm tego pierwiastka. Substancje zwiększające wchłanianie można także wykorzystać w preparatyce suplementów wapniowych. sorption of calcium and magnesium in normal infants., Am. J. Clin. Nutr., 1975, 28: 681-83.
 
12.
Kocian J., Skala I., Bakos K.: Calcium absorption from milk and lactose-free milk in healthy subjects and patients with lactose intolerance., Digestion, 1973, 9: 311-24.
 
13.
Abrams S.A., Griffin I.J., Davila P.M., Calcium and zinc absorption from lactosecontaining and lactose-free infant formulas., Am. J. Clin. Nutr, 2002, 76: 442-46.
 
14.
Condon J.R., et all.: Calcium and phosphorus metabolism in relation to lactose tolerance., Lancet, 1970, 1: 1027.
 
15.
Lengemann F.W.: The site of action of lactose in enhancement of calcium utilization., J. Nutr., 1959, 69: 23-27.
 
16.
Armbrecht H.J., Wasserman R.H.: Enhancement of Ca++ uptake by lactose in the rat small intestine., J. Nutr., 1976, 106: 1265-71.
 
17.
Lengemann F.W., Wasserman R.H., Comar C.L.: Studies on the enhancement of radiocalcium and radiostrontium absorption by lactose in the rat., J. Nutr., 1959, 68: 443-56.
 
18.
Wasserman R.H.: Lactose –stimulated intestinal absorption of calcium: a theory., Nature, 1964, 201: 997-99.
 
19.
Martin D.L., DeLucca H.F.: Influence of sodium on calcium transport by the rat small intestine., Am. J. Physiol., 1969, 216: 1351-59.
 
20.
Charley P., Saltman P.: Chelation of calcium by lactose: its role in transport mechanisms., Science, 1963, 139: 1205-06.
 
21.
Kim K.I., Benevenga N.L., Grummer R.H.: Estimation of the fraction of the lactose in high lactose diet available for fermentation in the cecum and colon of the rat., J. Nutr., 1978, 108: 79-89.
 
22.
Vaughan O.W., Filer L.J.: The enhancing action of certain carbohydrates on the intestinal absorption of calcium in the rat., J. Nutr., 1960, 71: 10- 14.
 
23.
Brommage R., Binacua C., Antille S., Carrie A-L.: Intestinal Calcium Absorption in rats is stimulated by dietary lactulose and other resistant sugars., J.Nutr., 1993, 123: 2186-94.
 
24.
Greger J.L., Nondigestible carbohydrates and mineral bioavailability., J. Nutr., 1999,129: 1434S-35S.
 
25.
Demigne C., Levart M.A.: Effect of feeding fermentable carbohydrates on the cecal concentration of minerals and their fluxes between the cecum and blood plasma in the rat., J. Nutr., 1989, 119: 1625-30.
 
26.
Mykkanen H.M., Wasserman R.H.: Enhanced absorption of calcium by casein phosphopeptides in rachitic and normal chicks., J. Nutr., 1980, 2141-48.
 
27.
Jiang Bo, Mine J.: Preparation of novel functional oligophosphopeptides from hen egg yolk phosvitin., J. Agric. Food Chem., 2000, 48: 990-94.
 
28.
Choi J., Jung Ch., et all.: Effectiveness of phosvitin peptides on enhancing bioavailability of calcium and its accumulation in bones., Food Chem., 2005, 93: 577-83.
 
29.
Sato R., Noguchi T., Naito H.: Casein phosphopeptides (CPP) enhances calcium absorption from the ligated segment of rat small intestine., J. Nutr. Sci. Vitaminol., 1986, 32: 67-76.
 
30.
Jiang Bo, Mine Y.: Phosphopeptides derived from hen egg yolk phosvitin: effect of molecular size on the calcium-binding properties., Biosci. Biotechnol. Biochem., 2001, 65: 1187-190.
 
31.
Bonjour J-P.: Dietary protein: an essential nutrient for bone health, J. Am. Coll. Nutr., 2005, 24: 526S-36S.
 
32.
Kerstetter J.E., O’Brien K.O., Insogna K.L.: Dietary protein affects intestinal calcium absorption, Am. J. Clin. Nutr., 1998, 68: 859-65.
 
33.
McCane R.A., Widdowson E.M., Lehmann H.: The effect of protein intake on the absorption of calcium and magnesium., Biochem. J., 1942, 36: 686-91.
 
34.
Heaney R.P., Protein and calcium: antagonist or synergists? Am. J. Clin. Nutr., 2002, 75: 609-610.
 
35.
Heaney R.P., Protein intake and calcium economy., J. Am. Diet. Assoc., 1993, 93: 1261-62.
 
36.
Pannemans DL., Schaafsma G., Westerterp KR.: Calcium excretion, apparent calcium absorption and calcium balance in young and elderly subjects: influence of protein intake., Br. J. Nutr., 1997, 77: 721- 29.
 
37.
Barzel U.S.: The skeleton as an ion exchange system: implications for the role of acid-base imbalance in the genesis of osteoporosis. J. Bone Miner. Res., 1995; 10: 1431-1436.
 
38.
Wasserman R.H., Comar C.L., Nold M.M.: The influence of amino acids and other organic compounds on the gastrointestinal absorption of calcium and strontium in the rat., J. Nutr., 1956, 59: 371-83.
 
39.
Lehmann H., Pollack L.: The influence of amino-acids on transfer of phosphate in muscle extract and on the solubility of Mg++ and Ca++ salts., J. Phsiol., 1941-42, 100: 17-18 P.
 
40.
Fleming S.E., Choi S.Y., Fitch M.D.: Absorption of short-chain fatty acids from rat cecum in vivo., J. Nutr., 1991, 121: 1787- 97.
 
41.
Sakata T.: Stimulatory effect of shortchain fatty acids on epithelial cell proliferation in the rat intestine: a possible explanation for trophic effect of fermentable fibre, gut microbes and luminal trophic factors., Br. J. Nutr., 1987, 58: 95-103.
 
42.
Lutz T., Scharrer E.: Effect of short-chain fatty acids on calcium absorption by the rat colon., Exp. Physiol., 1991, 76: 615-18.
 
43.
Trinidad T.P., Wolever T.M., Thompson L.U.: Effect of acetate and propionate on calcium absorption from the rectum and distal colon of humans., Am. J. Clin. Nutr., 1996, 63: 574-78.
 
44.
Ohta A., Ohtsuki M., Baba S., et all.: Calcium and magnesium absorption from the colon and rectum are increased in rats fed fructooligosaccharides., J. Nutr., 1995, 125: 2417-24.
 
45.
Morohashi T., Sano T., Ohta A., Yamada S.: True calcium absorption in the intestine is enhanced by fructooligosaccharides feeding in rats., J. Nutr., 1998, 128: 1815-18.
 
46.
Schulz A.G., Van Amelsvoort J.M., Beynen A.C.: Dietary native resistant starch but not retrograded resistant starch raises magnesium and calcium absorption in rats., J. Nutr., 1993, 123: 1724-31.
 
47.
Hara H., Nagata M., et al.: Increases in calcium absorption with ingestion of soluble dietary fibre, guar-gum hydrolysate, depend on the caecum in partially nepherectomizes and normal rats., Br. J. Nutr., 1996, 76: 773-84.
 
48.
Niness K.R.: Inulin and oligofructose: what are they., J. Nutr., 1999, 129: 1402S- 06S.
 
49.
Roberfroid M., Gibson G.R., Delzenne N.: Biochemistry of oligofructose, a nondigestible fructooligosaccharides: an approach to estimate its caloric value., Nutr. Rev., 1993, 51: 137-46.
 
50.
Abrams S.A., Griffin I.J., et all.: A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents., Am. J. Clin. Nutr., 2005, 82: 471-76.
 
51.
Griffin IJ., Hicks P., Heaney R.P., Abrams S.A.: Enriched chicory inulin increases calcium absorption mainly in girls with lower calcium absorption., Nutr. Res., 2003, 23: 901-909.
 
52.
Abrams S.A., et all.: An inulin-type fructans enhanced calcium absorption primarily via an effect on colonic absorption in humans., J. Nutr., 2007, 137: 2208-2212.
 
53.
Roberfroid M.B., Cumps J., Devogelaer J.P.: Dietary chicory inulin increases wholebody bone mineral density in growing male rats., J. Nutr., 2002, 132: 3599-3602.
 
54.
Roberfroid M.B, Delzenne N.: Dietary fructans., Annu. Rev. Nutr., 1998, 18: 117- 43.
 
55.
Ohta A., Motohaschi Y., et al.: Dietary fructooligosaccharides change the concentration of calbindin-D9k in the mucosa of the small and large intestine of rats., J. Nutr., 1998, 128: 934-39.
 
56.
Gibson G.R., Beatty E.R., et all.: Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin., Gastroenterology, 1995, 108: 975-82.
 
57.
Coussement P.A.: Inulin and oligofructose: safe intakes and legal status., J. Nutr., 1999, 129: 1412S-17S.
 
58.
Seifert S., Watze B.: Inulin and oligofructose: review of experimental data on immune modulation., J. Nutr., 2007, 137: 2563S-67S.
 
59.
Apanavicius C.J. et all.: Fructan supplementation and infection affect food intake, fever and epithelial sloughing from Salmonella challenge in weanling puppies., J. Nutr., 2007, 137: 1923-30.
 
60.
Shils M.E.: Magnesium. In modern nutrition in health and disease p.169-192, Baltimore: Williams and Wilkins, 1998.
 
61.
Rude R.K., Magnesium deficiency: a cause of heterogonous disease in humans., J. Bone Min. Res., 1998, 13: 749-58.
 
62.
Sojka J.E., Weaver C.M., Magnesium supplementation and osteoporosis., Nutr. Rev., 1995, 53: 71-74.
 
63.
Dimai H-P., Porta S., et all.: Daily oral magnesium supplementation suppresses bone turnover in young adult males., J. Clin. Endocrinol. Metab., 1998, 83: 2742- 48.
 
64.
Rude R.K., Oldhman S.B., Singer F.R.: Functional hypoparathyroidism and parathyroid hormone end-organ resistance in human magnesium deficiency., Clin. Endocrinol., 1976, 5: 209-224.
 
65.
Rude R.K., Adams J.S., et all.: Low serum concentration of 1,25-dihydroxyvitamin D in human magnesium deficiency., J. Clin. Endocrinol. Metab., 1985, 61: 933-40.
 
66.
Stendig-Lindberg G., Koeller W., et all.: Prolonged magnesium deficiency causes osteoporosis in the rat., J. Am. Coll. Nutr., 2004, 23: 704S-711S.
 
67.
Ryszka F, Dolińska B, et all.: The effect of magnesium and vitamin D3 on absorption and bioavailability of calcium fumarate Ca2+ ions in rats., Sci. Pharm., 1998, 66: 335-39.
 
68.
Stendig-Lindberg G., Tepper R., Leichter I.: Trabecular bone density in a two years controlled trial of peroral magnesium in osteoporosis., Magnesium Research, 1993, 6: 155-63.
 
69.
Carpenter T.O., et all.: A randomized controlled study of effects of dietary magnesium oxide supplementation on bone mineral content in healthy girls., J. Clin. Endocrinol. Metab., 2006, 91: 4866-72.
 
70.
Durlach J., Bac P., Durlach V. et al.: Magnesium status and agening: an update. Magnes. Res., 1998; 11: 25-42.
 
71.
Cohen L., Recent data on magnesium and osteoporosis., Magnesium Res., 1988, 1: 85-87.
 
72.
Rude R.K., Kirchen M.E., Gruber H.E., et all.: Magnesium deficiency – induce bone loss in the rat., Miner. Electrolyte. Metab., 1998, 24: 314-20.
 
73.
Kenney M.A., McCoy H., Williams L.: Effect of magnesium deficiency on strength, mass and composition of rat femur., Calcif. Tissue. Int., 1994, 54: 44-49.
 
eISSN:1734-025X
Journals System - logo
Scroll to top